
BOOTS:	Beginner	Object-
Oriented	TypeScript
By	Greg	Silber,	Austin	Cory	Bart,	and	James	Clause

Generated	on	Fri	Aug	30	2024

Table	of	Contents
1.	 Introduction

1.	 Welcome

2.	 Setup

1.	 Introduction	To	Typescript

1.	 Variables

2.	 Functions

3.	 Conditionals

4.	 Strings

2.	 Loops	and	Arrays

1.	 Loops

2.	 Arrays

3.	 Data	Classes

1.	 Introduction

2.	 Basic	Data	Classes

3.	 Data	Class	Constructors

4.	 Instances	and	References

5.	 This	keyword

4.	 Classes

1.	 Class	Methods

2.	 Data	Hiding

3.	 Object	Cloning

5.	 Composition	and	Inheritance

1.	 Composition

2.	 Inheritance

3.	 Putting	it	all	Together

6.	 Overrides	and	Polymorphism

1.	 Member	Access

2.	 Overrides

3.	 Polymorphism

4.	 Abstract	Classes

5.	 Polymorphism	Notes

7.	 Exceptions	and	Code	Quality

1.	 Exceptions

2.	 Comments

3.	 Naming

4.	 General	Code	Quality

8.	 Software	Testing

1.	 Testing

2.	 Testing	in	Jest

3.	 Anonymous	Functions

9.	 Webz	Introduction

1.	 Web	Basics

2.	 Beginning	WebZ

10.	 Advanced	WebZ

1.	 Dynamic	Components

2.	 WebZ	Events

3.	 WebZ	Dialogs

4.	 WebZ	Timers

11.	 Advanced	Typescript

1.	 Typescript	Generics

2.	 Typescript	Interfaces

3.	 Union	Types

12.	 Higher	Order	Methods

1.	 Higher	Order	Array	Methods

13.	 Recursion

1.	 Description	and	Definition	of	Recursion

2.	 Trees

0)	Introduction

0.1)	Welcome
What	is	this	text	about?

In	this	text	we	will	continue	to	study	the	field	of
Computer	Science	delving	deeper	into	core	concepts
and	introducing	new	concepts	and	paradigms	for
producing	well	engineered	software	solutions

Specifically,	we	will	study	Objects	and	Object-
Oriented	programming	techniques	as	well	as
various	structures	and	algorithms	to	promote	good
software	design.

Details
This	text	uses	the	 language	Typescript.	Typescript	 is	a	 free
and	 open-source	 programming	 language	 that	 adds	 static
typing	and	type	annotations	to	Javascript.

Typescript	is	used	widely	and	has	become	the	most	common
language	for	developing	applications	for	the	web.

Through	 this	 text	 and	 its	 associated	 materials	 you	 will
become	 familiar	 with	 the	 Typescript	 language	 and
developing	well	engineered	software	solutions.

ChatGPT	and	Co-Pilot
For	this	text,	use	of	these	tools	is	not	recommended.

This	is	not	an	arbitrary	statement:

These	tools,	while	impressive,	are	imperfect	and	often
generate	poor,	inefficient,	or	downright	incorrect
code.	In	order	to	use	these	tools,	one	must	already
know	how	to	program	well	in	order	to	be	certain	that
the	generated	code	is	correct.

In	some	cases,	these	tools	may	not	be	available,	and
thus	it	is	important	to	learn	to	work	without	them.

Once	you	achieve	mastery,	you	will	be	able	to	use	these
tools	in	the	future.

When	used	correctly	they	are	powerful,	but	incorrectly	they
are	dangerous.

Final	Thoughts	before	we	begin
Computer	 Science	 is	 hard	 until	 it	 is	 not.	 Be	 patient	 with
yourself	 and	be	persistent.	You	 are	 at	 the	beginning	 of	 the
journey,	 and	 that	 is	 the	 hardest	 part.	 As	 you	work	 through
this	text,	try	to	grasp	the	underlying	concepts.

0.2)	Setup
This	 section	 helps	 you	 figure	 out	 how	 to	 setup	 your
environment,	 install	 everything,	 and	 make	 sure	 your
environment	is	correct.

If	 everything	 goes	 well,	 this	 will	 only	 take	 you	 about	 20
minutes.	But	it	is	very	normal	to	encounter	issues	if	you	are
not	used	to	this	workflow.	Don’t	worry,	you	will	be	an	expert
soon!

Making	 web	 applications	 is	 super	 complicated,	 so	 we	 are
going	to	be	really	pushy	about	your	environment’s	setup	and
the	eventual	structure	of	our	web	application.	If	 this	seems
limiting,	that’s	the	idea.
Please	 try	 to	 stay	 within	 the	 bounds	 we	 give	 you,	 as	 you
experiment	and	try	things	out!

Do	not	skip	steps.

Read	error	messages,	and	ask	questions.	Talk	to	humans	as
needed	to	get	help,	and	use	google	intelligently.

Get	Software

Get	VSCode

Download	 Visual	 Studio	 Code
(https://code.visualstudio.com/download)

VS	 Code	 is	 an	 IDE	 (Integrated	 Development	 Environment)
that	you	will	program	in.

When	you	have	VS	Code	downloaded,	open	the	application.
You	will	need	to	install	two	extensions.

To	 open	 the	 extension	 menu,	 you	 can	 type	 Ctrl+Shift+X

(Windows)	or	 Cmd+Shift+X 	 (Mac).	There	 is	also	a	navigation
bar	 on	 the	 left	 side	 of	 your	 screen	 and	 you	 can	 click	 the
extensions	menu	that	looks	like	this:

A	search	bar	will	appear	at	the	top	of	the	menu.	Type	 ESLint
and	click	install:

https://code.visualstudio.com/download

Then,	search	for	 Prettier 	and	click	install:

Make	sure	you	have	installed	the	extensions	that	are	in	the
images	above.	These	are	the	correct	versions!

Get	Node
Next,	 Download	 and	 Install	 Node
(https://nodejs.org/en/download/)

You	should	use	the	installer	for	the	most	recent	LTS	version.
The	link	will	take	you	to	the	correct	download	page.

Once	you	have	downloaded	the	installer,	open	it.

https://nodejs.org/en/download/

You	may	notice	that	it	is	installing	both	Node	and	something
called	 npm.	 Node	 Package	 Manager	 (npm)	 will	 make	 it
easier
to	manage,	install,	and	update	node	packages.	You	need	both
of	these!

The	installer	will	ask	you	to	select	where	you	want	to	install
the	package;	keep	the	default	location	that	already
appears.

For	Windows:	 C:\Program	Files\nodejs

For	Mac:	 /usr/local/bin/node

Once	the	installer	is	finished,	you	should	see	this	screen:

Now	we	need	 to	verify	 that	 the	 installation	was	successful.
Navigate	back	to	VS	Code	and	open	a	Terminal.

At	the	top	of	your	VS	Code	window,	click	Terminal	and	then
click	New	Terminal:

A	new	terminal	will	appear	at	the	bottom	of	your	screen.	Its
appearance	can	vary	depending	on	your	platform,	but	you
might	see	something	like	this:

You	 should	 not	 be	 in	 any	 folders	 for	 this	 step!	 This	 should
not	be	an	issue	if	you	have	not	opened	a	project	in	VS	Code
yet.

The	blue	box	 is	 the	 cursor	where	 I	 can	 type	commands.	 In
the	future,	we	will	give	instructions	on	what	to	write	by
writing	boxes	like	this:

$	node	--version

Note	 that	 you	 do	 not	 write	 the	 dollar	 sign	 ($);	 that	 just
indicates	the	start	of	a	new	command.	Sometimes	folks	will
write	an	angle	bracket	(>)	or	some	other	symbol.

In	this	case,	you	need	to	type	 node	--version 	and	then	press
enter.	The	version	that	should	appear	is	 v20.11.0 	or	newer.
If	an	older	version	appears,	you	need	to	go	back	and	install
the	 LTS	 version	 ;	 some	 packages	 may	 only	 support	 the
latest
LTS	version	of	Node,	so	it’s	better	to	fix	it	now.

If	 node:	command	not	found 	appears,	it	means	something	went
wrong	with	your	installation.	Check	that	the	installer	is
properly	 finished.	 If	 it	 has,	 open	 the	 installer	 again	 and
verify	that	the	destination	of	your	installation	matches	the
ones	listed	above.

Once	 you	 have	 verified	 that	 Node	 was	 installed,	 enter	 the
command	(without	the	dollar	sign):

$	npm	--version

You	 should	 see	 10.2.4 	 or	 later	 appear	 if	 everything	 is
installed	correctly.

Note:	If	Node	and/or	Git	appear	to	not	be	working	correctly
or	do	not	seem	installed,	completely	quit	and	re-open
VS	 Code	 before	 troubleshooting.	 Sometimes	 VS	 Code	 will
not	recognize	the	install	immediately.

{:	.warning-title}

Get	Git
Next,	 Download	 and	 Install	 Git	 (https://git-
scm.com/downloads)

For	 Windows:	 You	 can	 download	 and	 use	 the	 installer.	 It
should	be	straightforward,	and	you	can	move	onto	the	next
section	once	it	finishes.

For	Mac:	 There	 are	 a	 few	 options	 you	 can	 choose	 from	on
the	download	page.
We	 recommend	 installing	 Homebrew	 (https://brew.sh/),
which	you	can	use	 to	 install	Git.	There	are	several	ways	 to
install	Homebrew,	 but	 here	 is	 the	 current	 easiest	way	 that
we	 know	 about.	 You	 will	 need	 to	 open	 up	 a	 Terminal,	 and
then	copy	this	(without	the	dollar	sign!)	and	hit	enter:

$	/bin/bash	-c	"$(curl-
fsSLhttps://raw.githubusercontent.com/Homebrew/install/HEAD
/install.sh)"

When	it	asks	for	password,	type	yours	in.	It’ll	output	a	lot	of
text,	and	then	beneath	a	large	list	of	tags,	you	see	a	purple
arrow	with	 "Next	Steps" .

Then	 type	 brew	 help 	 and	 hit	 enter,	 to	 confirm	 that
Homebrew	 was	 correctly	 installed.	 Wait	 a	 second	 for	 it	 to
spew	words	and	then,	when	able,	type:

https://git-scm.com/downloads
https://brew.sh/

$	brew	install	git

After	 that	you	should	be	done.	Once	you	have	verified	 that
everything	 has	 been	 installed	 correctly,	 you	 are	 ready	 to
move	on!

Create	GitHub	Account
Next,	 Create	 a	 GitHub	 Account
(https://github.com/signup)	 (if	 you	 don’t	 already	 have
one).

This	 account	 is	 an	 important	 part	 of	 your	 professional
identity.	You	will	use	 it	 to	store	your	code,	collaborate	with
others,	 and	 show	 off	 your	 work	 to	 potential	 employers.
Choose	 a	 username	 that	 is	 professional	 and	 easy	 to
remember.	You	are	likely	to	use	this	account	for	a	long	time,
so	choose	wisely!

Clone	Assignment
Now	that	you	have	a	programming	environment,	it	is	time	to
complete	the	first	coding	exercise	to	test	everything.

https://github.com/signup

On	 the	 original	 Canvas	 Assignment	 page	 that	 took	 you	 to
this	 page,	 there	 should	 be	 a	 link	 to	 the	 GitHub	Classroom
assignment.	 Click	 on	 that	 link	 to	 go	 to	 the	 starter
assignment	on	Github	Classroom.

You	 may	 need	 to	 reload	 the	 page	 manually.	 The	 process
should	 not	 take	 long.	 When	 the	 repository	 is	 ready,	 you
should	see
a	new	link:

Click	 the	 URL	 for	 the	 repository	 (e.g.,
“https://github.com/UD-S24-CISC181/hw0-setup-check-
acbart”)	to	access	your
repository.

Click	the	green	“<	>	Code”	button	and	a	menu	will	pop	out.

Click	 the	copy	button	 to	get	 the	URL	of	 the	repository.	You
will	clone	this	repository	in	VS	Code,	in	order	to	get	a
local	copy	of	the	repository	that	you	can	freely	edit.

You	will	need	to	run	the	“Git:	Clone”	command	in	VS	Code:

Type	 Ctrl+Shift+P 	(Windows)	or	 Cmd+Shift+P 	(Mac)	to
bring	up	the	Command	Palette

Type	 Git:	Clone 	and	press	enter

Type	 Ctrl+V 	(Windows)	or	 Cmd+V 	(Mac)	to	paste	the
previously	copied	link	and	press	enter

You	may	be	asked	to	authenticate	on	GitHub;	do	so.

A	folder	select	window	will	pop	up	and	ask	"Choose	a
folder	to	clone	into".	We	recommend	that	you	create	a
CISC-181 	folder	in	your	User	directory,	and	store	all	your
assignments	in	there.	If	you	select	that	 CISC-181 	folder,
then	a	new	folder	will	be	created	there	for	this
assignment.

When	completed,	it	will	ask	if	you	would	like	to	"open	the
cloned	repository".	Click	“Open”	to	open	the	repository	in
the	current	window.

Inspecting	the	Project
If	 everything	went	well	 in	 the	previous	 step,	 you	now	have
the	repository	downloaded	locally	and	open	in	VS	Code.

There	are	a	lot	of	files	already	in	this	repository,	but	we	only
need	to	look	closely	at	two	of	them.	If	the	file	are
not	already	visible,	click	the	document	icon	in	the	topleft	of
the	left	navigation	bar	to	see	the	Explorer	view.

This	shows	all	 the	current	 files	 in	 the	project.	We	are	most
interested	in	the	 src 	and	 test 	directories,	which	can
be	expanded	by	clicking	on	them.

Click	 on	 the	 basic.ts 	 file	 (NOT	 the	 basic.test.ts 	 file),
which	is	located	inside	of	the	 src 	folder.	This	will	open
up	the	file	in	the	editor	area.

It	looks	like	someone	defined	and	exported	a	function	named
addition ,	which	takes	in	three	 number 	parameters	and
returns	a	 number .

The	 code	 in	 this	 file	 is	 just	 a	 function,	 which	 will	 not	 do
anything	on	its	own.	We	could	run	the	function	definition,
but	we	would	not	see	anything	happen	since	the	function	is
not	even	being	called.	Let’s	try	running	the	project’s	tests
to	see	the	function	in	action.

Click	on	the	 basic.test.ts 	file	to	view	the	file’s	contents:

Note:	If	you	single	clicked	on	the	 basic.ts ,	file,	then	clicking
basic.test.ts 	replaces	the	file	in	the	current
view.	 To	 keep	 the	 file	 open	 even	 when	 you	 click	 on	 other
files,	double	click	the	filenames	instead.

{:	.warning-title}

Oh	dear,	 there	appear	 to	be	 red	 squiggles	 in	our	code,	 the
universal	sign	of	trouble.	What	has	gone	wrong?

To	find	out	more	details,	hover	over	the	first	word	with	the
red	squiggles	(describe)	and	a	message	box	will	appear.

The	 interface	 is	 reporting	 an	 error:	 it	 " Cannot	 find	 name

'describe'. "	It	goes	on	to	suggest	installing	" type	definitions

for	 a	 test	 runner "	 and	 even	 offers	 a	 command	 and	 some
Quick	Fix 	actions.

Should	you	take	the	advice	of	the	machine?	The	answer	will
always	be	"it	depends".	If	you	know	what	you	are	doing	and
the	 advice	 is	 correct,	 then	 you	 should	 certainly	 use	 a	 tool
like	this.	But	if	you	are	not	sure,	then	you	should	not	run
commands	you	do	not	understand.

In	 this	 case,	 the	 system	 is	 letting	 us	 know	 that	 we	 never
installed	 the	 necessary	 modules	 required	 to	 run	 our
program.
This	 is	 one	 of	 the	 first	 steps	 when	 starting	 a	 project	 -	 to
install	the	necessary	dependencies	onto	your	system.
We’ll	need	to	do	this	every	time	we	clone	a	new	assignment
repository.

Install	Modules
The	 next	 step	 is	 to	 open	 a	 Terminal	 that	 we	 can	 run
instructions	in.

At	the	top	of	your	VS	Code	window,	click	Terminal	and	then
click	New	Terminal.	You’ve	done	this	before,	but	this	time,
you	need	to	be	in	the	assignment	directory.	VS	Code	will	do
this	for	you!

A	new	terminal	will	appear	at	the	bottom	of	your	screen,	and
it	will	look	something	like	this	(notice	you	are	in
hw0-setup-check):

Run	the	command	(without	the	dollar	sign):

$	npm	install

A	whole	bunch	of	messages	will	appear,	some	of	which	may
look	alarming.	Just	because	you	see	red	text	does	not	mean
you
have	errors,	though.

Hopefully,	 you	 get	 a	message	 like	 the	 one	 shown	 above.	 It
says	that	it	" added	877	packages ".

The	 message	 also	 says	 that	 " 3	 vulnerabilities "	 were
detected	in	the	packages,	and	offers	a	command	to	fix	them.
Again,
you	might	be	wondering	 if	 you	 should	 take	 the	 advice	 of	 a
machine?	 Remember,	 do	 not	 run	 commands	 you	 do	 not
understand.

Modern	Typescript	development	requires	a	large	number	of
packages,	even	for	simple	projects.	Often,	these	projects	will
have	small	vulnerabilities	that	are	rigorously	tracked	by	the
community.	If	you	were	going	to	deploy	a	website	for	a
large	 bank	 or	 trusted	 government	 entity,	 then	 it	 would	 be
very	important	to	address	these	vulnerabilities.

However,	 you	 are	 a	 student	 learning	 to	 code.	 Let’s	 not	 get
caught	up	in	the	security	ramifications	of	our	 addition
function.	 At	 least,	 not	 yet.	 We	 will	 ignore	 these
vulnerabilities	and	move	back	to	the	code.

Running	the	Tests
The	 basic.test.ts 	 file	we	were	 looking	at	before	no	 longer
has	red	squiggles!	The	code	is	much	easier	to	read	now.

This	 is	 a	 test	 file	written	with	a	 library	named	 "Jest	 ".	You
have	previously	seen	unit	tests	written	using	the
Bakery’s	 assert_equal 	 function,	 but	 Jest	 is	 a	 much	 more
sophisticated	testing	framework.	Let’s	look	at	each	part	of
the	file	in	turn.

At	the	top	of	the	file	(on	line	1),	we	 import 	the	 addition
function	from	the	 basic.ts 	file,	which	is	in	the	 src
directory.	Since	that	function	was	 export ed,	we	are	able
to	 import 	the	function	in	this	file.

The	next	line	of	code	(line	3)	is	a	call	to	the	 describe
function,	which	is	a	Jest	function	for	organizing	a	suite	of
unit	tests.	It	takes	the	 string 	name	of	a	collection	of
tests	and	then	an	anonymous	function	that	has	all	the
tests	inside.	Don’t	worry	about	that	“anonymous
function”	term	just	yet;	for	now,	just	think	of	it	as	a	block
of	code	that	Jest	will	run	for	us.

The	inside	of	the	 describe 	function	call	is	a	sequence	of
four	calls	to	the	 test 	function	(on	lines	4,	9,	14,	and	19).
The	test	function	is	another	Jest	function,	once	again	for
organizing	related	unit	tests.	We	give	names	to	the	tests,
and	sometimes	we	will	also	let	you	know	how	much	that
test	is	worth	to	us	when	we	grade	the	assignment.	Then
there	is	another	anonymous	function	to	have	the	actual
assertions.

On	lines	5,	6,	10,	11,	15,	16,	and	20,	we	see	the	actual
assertions,	which	are	equivalent	to	the	 assert_equal
function	you	saw	previously.	In	Jest,	they	are	written
using	the	 expect 	function,	which	consumes	one
expression	(almost	always	a	function	call	for	the	function
we	are	testing).	The	result	of	the	 expect 	function	is	an
object	that	has	a	 toEqual 	method,	which	allows	us	to
check	the	expected	result.	Again,	don’t	worry	about	the

terms	just	yet,	just	focus	on	the	comparable	idea	for
writing	tests	between	Bakery	and	Jest:

#	Bakery	version	in	Python		
assert_equal(addition(1,	2,	3),	6)		

//	Jest	Version	in	Typescript		
expect(addition(1,	2,	3)).toEqual(6)

The	two	approaches	are	basically	the	same,	but	Jest	has	a	lot
of	features	for	organizing	the	unit	tests.	Jest	also	has	a
lot	of	other	kinds	of	assertions,	which	we	might	see	later	in
this	course.	For	now,	all	that	matters	is	that	we	can	see
there	are	7	tests.

Are	 we	 passing	 the	 tests?	 To	 find	 out,	 go	 back	 to	 the
terminal	 and	 enter	 the	 following	 command	 (without	 the
dollar
sign):

$	npm	run	test

The	output	might	take	a	 little	while	the	first	 time,	and	may
be	so	long	that	it	scrolls	offscreen.	The	final	output
might	look	something	like	this:

The	bottom	of	the	output	has	a	summary	of	what	happened.

We	had	one	test	suite	(“addition	function”)

With	four	total	tests

Three	of	which	failed	("Positive	Numbers",	"Negative
Numbers",	and	“Mixed	Numbers”)

One	of	which	passed	(“Zeros”)

Scrolling	 up	 through	 the	 output,	 you	 can	 see	more	 details
about	exactly	which	tests	failed,	and	the	specific	 expect
assertions	that	went	wrong.

According	to	the	output,	the	 Positive	Numbers 	test	called	the
addition 	function	with	the	arguments	 1,	2,	3 	and
expected	the	result	to	be	 6 .	However,	instead	the	result	was
-4 .	There	seems	to	be	an	error	in	our	code.

Fix	the	Code
Let	 us	 return	 to	 our	 source	 code	 file,	 basic.ts ,	 where	 the
addition	function	was	defined.

There	 is	 a	 new	 red	 squiggle	 waiting	 for	 us!	We	 can	 hover
over	the	squiggle	to	find	out	what	it	is	about.

The	 feedback	 from	the	environment	has	nothing	 to	do	with
the	correctness	of	our	code.	Instead,	this	is	the	linter
(eslint)	 complaining	 about	 the	 formatting	 of	 our	 file.
Specifically,	the	system	wants	us	to	add	a	newline	at	the	end
of	our	file.

Sometimes,	 you	 may	 disagree	 with	 what	 the	 Linter	 says.
There	is	a	 lot	of	subjective	opinions	about	how	code	should
be
formatted.	On	a	good	development	team,	all	 the	developers
will	agree	on	a	set	of	linting	rules	that	they	can	live	with.
However,	 while	 you	 are	 starting	 out	 (and	 even	 sometimes
when	you	are	established),	 you	may	have	 to	 live	with	 rules
you
do	not	 like.	In	this	case,	we	need	everyone	to	follow	linting

rules	to	make	our	ability	to	help	you	more	effective.
Clean,	 well-formatted	 code	 is	 much	 easier	 to	 read	 and
debug!

{:	.info-title}

Add	a	blank	line	at	the	end	of	the	file	to	make	the	squiggle
go	away.

However,	 this	does	not	 fix	 the	program.	You	should	 look	at
what	the	function	is	doing	and	think	about	it	for	a	moment.
We	will	not	tell	you	the	error,	but	you	have	probably	already
noticed	it.	Either	way,	fix	the	code	now.

You	may	notice	a	black	dot	next	to	the	name	of	the	 basic.ts
file	in	the	tab.	This	indicates	that	the	file	has	not	been
saved.	 Save	 the	 file	 now	 (either	 using	 the	 appropriate
keyboard	shortcut	or	 the	File	menu).	 If	you	do	not	 fix	AND
save
the	file,	then	the	next	step	will	not	work.

Run	the	Tests	Again

Now	that	you’ve	 fixed	 the	code	and	saved	 the	 file,	 you	can
return	to	the	terminal	to	run	the	tests	again:

$	npm	run	test

And	the	resulting	output	this	time	should	look	a	lot	happier.

With	the	code	fixed,	we	are	now	ready	to	save	our	work	back
to	our	remote	repository.

Stage/Commit/Push	to	GitHub

Periodically,	 as	 you	 complete	 portions	 of	 assignments,	 you
should	stage	and	commit	your	work	in	your	local	Git
repository.	 This	 makes	 a	 backup	 of	 your	 work	 locally	 and
also	will	give	us	a	clear	indication	of	your	work	timeline.
When	 you	 are	 done	 the	 assignment,	 you	 can	 push	 your
commits	to	the	remote	repository	on	GitHub.

We	will	discuss	 these	 terms	a	 lot	more	 in	 lecture,	but	here
are	some	basic	definitions:

Stage:	Mark	locally	edited	files	as	being	ready	to	save.

Commit:	Save	a	group	of	files’	current	state	along	with	a
message	describing	the	change	made	to	them.

Push:	Move	a	bunch	of	local	commits	to	a	remote
repository.

To	 stage	 and	 commit	 files,	 we	will	 use	 the	 Source	 Control
panel,	accessible	from	the	left	navigation	bar.

The	Source	Control	panel	gives	us	a	graphical	user	interface
for	running	Git	commands.	We	could	also	run	them	from	the
terminal,	but	for	now	it	will	most	likely	be	easier	to	use	this
interface.

VS	 Code	 has	 identified	 two	 files	 that	 we	 have	 edited:
basic.ts 	and	 package-lock.json .

You	hopefully	remember	editing	the	 basic.ts 	 file,	but	what
about	 package-lock.json ?	That’s	a	file	used	by	the	system
to	track	the	installed	packages.	We	updated	it	when	we	ran
npm	install.	You	don’t	need	to	worry	about	this	file.

Instead,	focus	on	the	 basic.ts 	 file.	Click	on	the	filename	in
the	Source	Control	panel	and	VS	Code	will	show	you	a
diff	(“difference”).

The	dark	red	line	was	deleted	from	the	left,	so	it	shows	up	as
a	grey	hatched	line	on	the	right.	Similarly,	the	light
red	line	was	modified	on	the	left,	so	it	shows	up	as	a	green
line	on	the	right.	This	was	indeed	the	changes	we	made	to
the	file.

We’re	 happy	 with	 these	 changes,	 so	 the	 time	 has	 come	 to
stage	the	files.

Click	the	plus	button	next	to	each	file	to	Stage	them.

When	staged,	 the	 files	are	moved	 to	 the	“Staged	Changes”
section,	and	are	ready	to	be	committed.

However,	 first	we	must	write	 a	 commit	message	 to	 explain
what	we	have	done.	This	message	should	be	short,	ideally
fitting	 nicely	 into	 that	 box.	 If	 someone	 scrolls	 through	 the
history	of	our	commit	messages,	they	should	have	a	clear
idea	of	what	we	did	while	writing	the	project.

An	 example	 commit	 message	 here	 might	 be	 Addition

function	fixed .

It	 might	 have	 been	 a	 better	 idea	 to	 make	 two	 separate
commits,	 one	 for	 updating	 the	 package-lock.json	 file
(“Modules
installed”)	 and	 then	 one	 for	 just	 the	 basic.ts	 file	 (“Addition
function	fixed”).	Commits	don’t	have	to	be	made	with	all
edited	files;	 just	the	ones	you	have	staged.	Deciding	on	the
granularity	of	your	commits	is	a	personal	decision,	but	we
encourage	you	to	be	fine-grained!

{:	.info-title}

Once	you	have	typed	your	message,	click	the	Commit	button
to	commit	your	staged	changes.

After	committing,	the	button	will	change	to	"Sync	Changes",
allowing	you	to	push	your	commits	to	GitHub.

Click	 the	 Sync	 Changes	 button,	 and	 you	 will	 be	 told	 "This
action	 will	 pull	 and	 push	 commits	 from	 and	 to
"origin/main"".

Click	"OK",	because	that	is	exactly	what	we	want	to	do.

The	 Source	 Control	 panel	will	 now	 be	 partially	 greyed	 out
since	you	have	nothing	left	to	commit.

If	 you	encounter	an	error	 like	 “need	 to	 configure	git”
before	 you	 can	 push,	 then	 you	 can	 run	 the	 following
commands	 in	 the	 Terminal,	 substituting	 your	 email
address	and	name.

git	config	--global	user.email	"YOUREMAIL@udel.edu"			
git	config	--global	user.name	"YOUR	NAME"

Make	sure	you	replace	 YOUREMAIL 	with	your	UD	Email,
and	 YOUR	NAME 	with	your	name	(e.g.,	“Austin	Bart”).
{:	.info-warning}

If	everything	went	well,	you	should	be	able	to	see	your	new
commit	on	the	GitHub	repository	website.

We’re	almost	done.	The	time	has	come	to	submit!

Submitting	on	GradeScope
At	 the	 bottom	 of	 the	 assignment	 page	 on	 Canvas,	 you	will
see	 a	 box	 with	 GradeScope	 embedded	 inside	 (just	 like
BlockPy!).	GradeScope	is	a
platform	 for	 running	 student	 code	 through	 instructor	 unit
tests,	which	will	give	you	automatic	feedback	and	score	you.

For	this	assignment,	GradeScope	will	run	the	same	tests	that
we	gave	you.	But	in	future	assignments,	we	may	have	hidden
tests.	 This	 helps	 make	 sure	 that	 you	 are	 fulfilling	 all	 the

parts	of	the	assignment,	and	not	just	coding	directly
against	the	tests	we	gave	you.	Make	sure	you	follow	all	the
instructions!

In	the	box	below,	click	Submit	and	then	choose	“GitHub”	as
the	submission	method.

The	 first	 time	 you	 submit	 your	 repository,	 you	will	 need	 to
authorize	Gradescope	to	access	your	git	repository.

When	 you	 click	 to	 authorize	 GitHub	 with	 Gradescope,	 the
embedded	page	may	fail	to	load.	If	this	happens,	just	open
https://gradescope.com	(https://gradescope.com),	go	into	the
course	 and	 assignment	 ("Homework	 0-	 Setup	 Check"),	 and
authorize	there.	The
permissions	should	work	fine	in	a	separate	browser	tab.

Type	 the	 name	 of	 your	 repository	 and	 choose	 it	 from	 the
dropdown.	It	should	start	with	 hw1 .

From	the	branch	dropdown,	choose	the	 main 	branch.

You	can	submit	multiple	times	before	the	deadline.	Your	last
submission	 will	 determine	 your	 grade.	 For	 many
assignments,
we	 will	 give	 you	 additional	 feedback	 beyond	 what	 the
autograder	will	give	you,	so	do	not	assume	that	your	grade
will
remain	 as	 it	 is.	 However,	 if	 the	 autograder	 reports	 any
issues,	you	should	definitely	handle	them	now!

https://gradescope.com/

Summary
Let	us	review	all	the	steps	we	took	in	this	assignment:

Created	a	fork	of	the	assignment	on	GitHub	Classroom

Cloned	the	repository	onto	your	computer

Installed	the	project’s	modules	using	npm	install

Ran	the	project’s	tests	using	npm	run	test

Edited	the	Typescript	source	code	files	for	the	project	in
the	src/	directory

Reran	the	tests	to	make	sure	everything	worked

Staged,	Commited,	and	Pushed	the	changes	to	your
repository

Submitted	the	repository	below	to	GradeScope

Confirmed	that	we	passed	all	the	autograder	tests

This	will	be	the	workflow	for	the	rest	of	the	semester,	so	get
used	to	it!

1)	Introduction	To
Typescript

1.1)	Variables
A	variable	is	a	named	container	for	some	unknown	value.	We
can	 use	 variables	 to	 create	 generic	 code	 that	 works	 on
different	values.

Motivation

Simple	Math	Example
Consider	a	simple	math	expression:

3+4

This	 is	 useful	 in	 computing	 this	 specific	 value	 (7),	 but	 is
only	useful	in	that	one	particular	case.
On	the	other	hand:

X+4

This	would	compute	 the	 same	value	 if	 X=3 ,	 but	would	also
compute	a	correct	value	for	any	other	value	of	 X .
This	is	the	basic	idea	of	why	we	use	variables.	We	can	write

a	single	expression	that	computes	a	correct	answer	for	many
possible	values	of	 X 	(the	variable).

Another	Math	Example

Using	variables	we	can	represent	concepts	like	the	equation
of	a	line.	In	the	visualization	shown:

m 	is	the	slope	of	the	line	(change	in	 y 	over	change	in
x)	and

c 	is	where	the	line	intersects	the	 y 	axis.

The	equation	 y	=	mx	+	c 	represents	every	possible	straight
line.

y	=	2x	+	4 	represents	a	specific	line.	By	assigning	a	value	to
the	variable	 x 	we	can	compute	 the	appropriate	 y 	 for	 this
line.

Just	 like	 we	 can	 use	 variables	 in	 math	 to	 create	 an
expression	 that	 represents	 a	 line,	 in	Computer	 Science	we
can	 use	 the	 same	 idea	 to	 create	 code	 that	 computes	 the
correct	answer	for	a	variety	of	input	values.

Variables	Have	Types
But	what	happens	if	we	do	this?

x	=	"hello"
y	=	2	*	x	+	4

This	doesn’t	make	any	sense.

To	make	sure	that	our	code	makes	sense,	we	attach	a	type
to	 our	 variables	 so	 that	 we	 will	 get	 an	 error	 if	 we	 try	 to
assign	a	value	to	the	variable	that	is	not	appropriate.

We	 do	 this	 by	 declaring	 the	 variable	 and	 specifying	 what
type	 of	 data	 it	 can	 contain.	 Once	 declared,	 we	 will	 not	 be
able	to	assign	an	inappropriate	value	type	to	that	variable.

Declare	Variables

So	how	do	we	declare	a	variable?
It	depends	on	the	language	we	are	using,	but	in	general,	we
specify:

its	name,

its	type,	and

potentially	its	initial	value.

{:	.warning-title}

Note,	 if	we	 do	 not	 specify	 its	 initial	 value,	 then	we	 cannot
read	its	value	until	we	do.

In	 this	 short	 Typescript	 code	 snippet,	 we	 declare	 the
variable	 myValue 	 to	 hold	 a	 number	 and	 assign	 it	 an	 initial
value	of	 4 .
We	declare	the	variable	 answer 	as	a	 number ,	but	do	not	give
it	a	value.
We	then	compute	 myValue+3 	and	store	it	in	answer.

let	myValue:	number	=	4;
let	answer:	number;
answer	=	myValue	+	3;
console.log(answer);

Declaration	Syntax

TODO:	Convert	this	to	an	image	with	annotations,	perhaps

Some	key	notes	on	the	syntax	of	declaring	a	variable:

Use	 let 	to	declare	a	variable.

Use	 : 	symbol	after	the	name,	followed	by	the	type.

Use	 = 	followed	by	an	expression	to	assign	an	initial
value.

The	statement	should	end	with	a	 ;

Types	in	TypeScript
Typescript	has	only	three	basic	types.

number :	Holds	any	numeric	data	(e.g.	 42 	or	 3.14159)

string :	Holds	a	string	of	characters	(e.g.	 "Hello	World")

boolean :	Holds	the	value	 true 	or	 false

There	 are	 other	more	 complex	 types	we	will	 examine	 later
(like	arrays)	and	we	can	even	create	our	own	types	to	use	in
our	programs.

Combining	Variables

//	Code	to	compute	the	area	of	a	circle	with	radius	2.
let	pi:	number	=	3.1415927;
let	r:	number	=	2;
let	answer:	number	=	pi	*	r	*	r;
console.log(answer);

If	we	change	the	value	of	 r ,	then	we	compute	the	area	of	a
different	circle.

Later	we	will	 look	at	turning	this	code	into	a	function	 that
can	be	called	with	different	values	of	 r 	and	reused.

If	 we	 assign	 a	 non-numeric	 value	 to	 r 	 (which	 makes	 no
sense)	we	would	 get	 a	 compiler	 error	 telling	 us	where	 the
problem	is	so	we	can	fix	it.

let	pi:	number	=	3.1415927;
let	r:	number	=	"Hello";
let	answer:	number	=	pi	*	r	*	r;
console.log(answer);

Boolean	Expressions
Since	a	variable	can	take	on	many	values,	we	might	want	to
compare	 the	value	 to	something	 to	see	 if	 it	 is	 the	same,	or
greater	than	or	less	than.

In	typescript,	we	do	this	with:

=== :	test	if	equal

!== :	test	if	not	equal

<= :	test	if	less	than	or	equal	to,

>= :	test	if	greater	than	or	equal	to

< :	test	if	less	than

> :	test	if	greater	than

{:	.info-title}
Note	 that	 the	 equality	 operator	 is	 === 	 (three	 equal	 signs)
and	 not	 == 	 (two	 equal	 signs).	 There	 is	 a	 double	 equal
operator	(==)	operator,	but	it	 is	not	recommended	to	use	it
since	 it	 is	not	 type	safe.	Most	modern	TypeScript	code	will
use	the	triple	equal	operator	(===).

The	 result	 of	 the	 expression	 will	 have	 the	 type	 boolean.
That	is,	it	will	be	either	 true 	or	 false .

let	myValue:	number	=	5;
let	isEqual:	boolean	=	(myValue	===	5);
//	isEqual	will	be	true
let	isGreater:	boolean	=	(myValue	>	5);
//	isGreater	will	be	false
let	isLessEqual:	boolean	=	(myValue	<=	5);
//	isLessEqual	will	be	true
console.log(isEqual);
console.log(isLessEqual);
let	myString:	string	=	"Hello"
let	isStrEqual:	boolean	=	(myString	===	"Hello");
//	isStrEqual	will	be	true
let	isStrEqual2:	boolean	=	(myString	!==	"Hello");
//	isStrEqual2	will	be	false
console.log(isStrEqual);

Summary
Variables	 are	 a	 powerful	 way	 to	 create	 generic	 code	 that
produces	expected	results	on	a	variety	of	different	inputs.

The	values	that	we	assign	to	variables	can	come	from	many
sources	 like	 data	 files,	 user	 input,	 databases,	 or	 online
resources.	 The	 code	 will	 work	 regardless	 of	 the	 values	 so
long	as	they	are	of	the	correct	type.

Throughout	this	text	we	will	use	variables	to	create	reusable
code.	We	will	 later	 learn	other	data	types,	and	even	how	to
create	our	own	types	containing	complex	data.

1.2)	Functions
A	function	is	a	collection	of	code	which	performs	a	specific
task.	It	can	take	parameters	and	return	a	value.

Functions	Are	Blocks	of	Code
For	now,	we	will	discuss	functions	as	named	blocks	of	code.
Later	 we	 will	 learn	 how	 to	 create	 anonymous	 functions
which	do	not	have	a	name,	but	for	this	review,	functions	will
have	names.

We	declare	(or	define)	a	function	in	typescript	by	specifying
its:

Name:	The	name	of	the	function

Parameters:	Local	variables	that	are	set	to	the	value	of
the	arguments	passed	into	the	call

Return	type:	The	expected	type	that	this	function	will
return

Body:	The	code	that	makes	up	the	function	and	will	be
executed	when	the	function	is	called.

Once	declared,	we	can	call	(use)	that	function	anywhere	in
our	 code	 to	 execute	 it	 without	 worrying	 about	 the	 code
inside.	As	long	as	we	know	how	to	call	it	and	the	meaning	of

what	it	returns,	we	can	use	it.

{:	.warning-title}

Remember,	you	should	only	use	the	verb	“call”	when	you	are
talking	 about	 invoking	 a	 function.	 When	 you	 are	 talking
about	defining	a	function	or	variable,	use	the	verb	“declare”
or	"define".	When	you	are	talking	about	using	a	variable,	use
the	verb	"use",	"access",	or	"get".	You	should	never	use	the
verb	“call”	when	 talking	about	accessing	a	variable	 (unless
that	variable	is	a	function).

Examples

An	Example	Function

function	areaOfCircle(radius:	number):	number{
				let	pi:	number	=	3.1415927;
				return	pi	*	radius	*	radius;
}

{:.no-run}

In	 this	example,	we	have	a	 function	named	 areaOfCircle .	 It
takes	 one	 parameter,	 radius ,	 which	 is	 a	 number .	 The
function	returns	a	 number .

Notice	 that	 the	 parameter’s	 type	 is	 specified	 after	 the
parameter	 name,	 separated	 by	 a	 colon.	 The	 return	 type	 is
specified	after	the	parameter	list,	also	separated	by	a	colon.

The	body	of	the	function	is	enclosed	in	curly	braces	 {} .	The
code	 that	 makes	 up	 the	 function	 goes	 inside	 the	 curly
braces,	on	separate	lines	separated	by	semicolons.

The	 final	 line	 of	 the	 function	 is	 a	 return 	 statement.	 This
statement	returns	the	value	of	the	expression	to	the	right	of
the	 return 	keyword.	The	function	will	exit	at	this	point,	and
the	value	will	be	returned	to	the	call	site.

Another	Example	Function

function	addTwoNumbers(a:	number,	b:	number):	number{
				return	a	+	b;
}

{:.no-run}

In	this	example,	we	have	two	parameters,	 a 	and	 b ,	both	of
which	 are	 number s.	 The	 function	 returns	 a	 number .	 The
parameters	are	separated	by	commas.

Example	Function	Calls

function	areaOfCircle(radius:	number):	number{
				let	pi:	number	=	3.1415927;
				return	pi	*	radius	*	radius;
}

let	myArea:	number	=	areaOfCircle(2);
console.log(myArea);

We	can	call	this	function	from	anywhere	in	our	code	by	using
its	name.

This	code	will	 call	our	 function	 areaOfCircle 	and	substitute
2 	 for	 the	 parameter	 radius ,	 then	 return	 the	 calculation

and	store	the	result	 12.5663708 	in	the	variable	 myArea .

Printing	with	 console.log
You	 may	 have	 noticed	 the	 user	 of	 console.log 	 in	 our
previous	 examples.	 console.log 	 is	 a	 very	 important	 built-in
function	 in	 TypeScript.	 This	 function	 takes	 any	 number	 of
arguments	and	prints	them	to	the	console.

console.log("Hello,	world!");

This	code	will	print	 Hello,	world! 	to	the	console.

Calling	and	Printing
A	common	misconception	is	that	functions	print	their	return
value.	This	is	not	true.	Functions	return	a	value,	but	they	do
not	print	it.	If	you	want	to	see	the	value,	you	must	print	it.

function	addTwoNumbers(a:	number,	b:	number):	number{
				return	a	+	b;
}

let	sum:	number	=	addTwoNumbers(2,	3);
console.log(sum);

You	do	not	have	to	store	the	return	value	in	a	variable	before
printing	it.	You	can	print	it	directly.

function	addTwoNumbers(a:	number,	b:	number):	number{
				return	a	+	b;
}

console.log(addTwoNumbers(2,	3));

Multiple	Arguments	to	 console.log
You	can	pass	multiple	arguments	to	 console.log .	It	will	print
each	argument	separated	by	a	space.

console.log("The	sum	of",	2,	"and",	3,	"is",	5);

The	output	of	this	code	will	be	 The	sum	of	2	and	3	is	5 .

Testing	Functions

function	addTwoNumbers(a:	number,	b:	number):	number{
				return	a	+	b;
}

test("Test	addTwoNumbers",	()	=>	{
				expect(addTwoNumbers(2,	3)).toBe(5);
				expect(addTwoNumbers(0,	0)).toBe(0);
				expect(addTwoNumbers(-1,	1)).toBe(0);
});

{:.no-run}

We	 can	 test	 our	 functions	 by	 calling	 them	 with	 different
arguments	and	checking	the	return	value.	Usually,	testing	in
TypeScript	is	done	with	a	testing	framework	like	Jest.	The
tests	will	 be	 placed	 in	 a	 separate	 file	 from	 the	 code	 being
tested,	 and	 the	 testing	 framework	 will	 run	 the	 tests	 and
report	 the	 results.	 These	 testing	 frameworks	 have	 built-in
functions	 like	 expect 	 and	 toBe 	 that	 make	 it	 easy	 to	 write
tests,	and	organize	them	into	test	suites	using	the	 test 	and

describe 	functions.	Much	of	these	details	are	not	important
for	now,	but	you	should	be	aware	that	testing	is	an	important
part	of	software	development.

Documenting	Functions

/**
	*	Compute	the	area	of	a	circle
	*	@param	radius	The	radius	of	the	circle
	*	@returns	The	area	of	the	circle
	*/
function	areaOfCircle(radius:	number):	number{
				let	pi:	number	=	3.1415927;
				return	pi	*	radius	*	radius;
}

{:.no-run}

We	can	document	our	functions	by	adding	a	comment	above
the	 function	 declaration.	 This	 comment	 should	 describe
what	the	function	does,	what	parameters	it	takes,	and	what
it	 returns.	 This	 is	 called	 a	 JSDoc	 comment.	 It	 is	 a	 special
type	 of	 comment	 that	 is	 used	 to	 document	 functions,
variables,	 and	 classes	 in	 TypeScript.	 It	 is	 important	 to
document	your	code	so	that	others	can	understand	it,	and	so
that	 you	 can	 remember	 what	 you	 were	 thinking	 when	 you
wrote	it.	We’ll	talk	more	about	documentation	later.

Summary
Functions	 are	 blocks	 of	 code	 that	 perform	 a	 specific	 task.
They	can	take	parameters	and	return	a	value.	We	declare	a
function	 by	 specifying	 its	 name,	 parameters,	 return	 type,
and	 body.	We	 can	 call	 a	 function	 anywhere	 in	 our	 code	 to
execute	it.

1.3)	Conditionals
A	conditional	 is	a	way	 to	alter	program	flow	based	on	 the
value	(truthiness)	of	some	boolean	expression.

The	 if 	Statement
In	 typescript,	 the	 most	 common	 conditional	 is	 the	 if

statement.

The	 if 	statement	evaluates	a	conditional	(or	logical)
expression	and	executes	the	code	inside	the	 if
statement	only	if	that	expression	is	 true .

The	 if 	statement	can	have	an	 else 	branch.	The	 else
branch	is	only	executed	if	the	expression	evaluates	to
false .

Using	 if 	 statements	 we	 can	 execute	 different	 code	 based
on	the	values	of	variables	at	run	time,	allowing	us	to	create
programs	that	are	reactive	to	different	states	as	the	program
runs.

Example	of	an	 if 	Statement

let	year	=	"freshman";

if	(year	!==	"senior")	{
				console.log("You	must	register	for	classes");
}

Consider	the	case	of	a	program	that	asks	the	user	their	year.

If	they	are	not	a	senior,	the	program	registers	them	for
next	semester.

If	they	are	a	senior	then	the	program	does	nothing.

let	year	=	"senior";

if	(year	!==	"senior")	{
				console.log("You	must	register	for	classes");
}

Example	of	an	 if 	Statement	with	an
else 	Branch
Now	suppose	instead	of	doing	nothing	special	when	the	user
enters	 senior,	 we	 want	 to	 send	 them	 an	 invitation	 to
graduation.
We	 can	 handle	 this	 with	 an	 else 	 branch	 on	 our	 if

statement.

let	year	=	"senior";

if	(year	!==	"senior")	{
				console.log("You	must	register	for	classes");
}	else	{
				console.log("Come	to	graduation");
}

Nesting	 if 	inside	of	Functions
We	can	also	nest	 if 	statements	inside	of	functions.

/**
	*	Register	for	classes	if	not	a	senior
	*	@param	year	The	year	of	the	student
	*	@returns	A	message	to	the	student
	*/
function	registerForClasses(year:	string):	string	{
				if	(year	!==	"senior")	{
								return	"You	must	register	for	classes";
				}	else	{
								return	"Come	to	graduation";
				}
}

test("Test	registerForClasses",	()	=>	{
				expect(registerForClasses("freshman")).toBe("You	must	
register	for	classes");
				expect(registerForClasses("senior")).toBe("Come	to	
graduation");
});

The	else	if	construct
Consider	the	code

if	(x>4){
				//do	something
}	else	{
				if	(x>2){
								//do	something	else
				}	else	{
								//do	a	third	thing
				}
}

{:	.no-run}

We	can	see	that	this	will	behave	as	expected.
If	x	is	>	4,	the	first	block	will	execute,	otherwise	the	second
block	will	execute.	Within	the	second	block	 if	x	>2	the	 //do
something	else	will	 execute,	otherwise	 the	do	a	 third	 thing
will	happen.	This	is	exactly	like	the	else	if	behavior	we	want,
just	a	little	ugly.

We	can	rewrite	this	as

if	(x>4){
				//do	something
}	else	if	(x>2){
				//do	something	else
}	else	{
				//do	a	third	thing
}

{:	.no-run}

It	 turns	out	that	 if	 the	block	 inside	an	if	or	else	 is	only	one
statement	long,	we	are	allowed	to	drop	the	{}.	The	compiler
will	then	assume	only	the	next	statement	is	inside	the	block.
Even	though	the	if	is	multiple	lines,	it	is	a	single	if	statement
with	body,	so	this	still	works.
We	 end	 up	 with	 something	 that	 does	 the	 same	 thing,	 but
looks	a	lot	better.
We	have	simply	dropped	the	{}	around	the	first	else	block,
since	the	(if	x>2){…}	statement	is	the	only	thing	inside	of	it.

Comparison	Operators	for
Equality	and	Ordering
As	 a	 reminder,	 there	 are	 six	main	 comparison	 operators	 in
TypeScript:

Equality:

X	===	Y :	 true 	if	 X 	and	 Y 	are	equal

X	!==	Y :	 true 	if	 X 	and	 Y 	are	not	equal

Ordering:

X	<	Y :	 true 	if	 X 	is	less	than	 Y

X	>	Y :	 true 	if	 X 	is	greater	than	 Y

X	>=	Y :	 true 	if	 X 	is	greater	than	or	equal	to	 Y

X	<=	Y :	 true 	if	 X 	is	less	than	or	equal	to	 Y

All	 of	 these	 operators	 are	 comparison	 operators,	 but	 they
are	also	either	equality	operators	or	ordering	operators.

Boolean	Operators
We	 can	 use	 Boolean	 operators	 to	 combine	 boolean
expressions:

and	(&&):	true	when	both	conditions	are	true

or	(||):	true	when	at	least	one	of	the	conditions	is	true,
and	also	when	both	are	true

let	happiness:	number	=	8;
let	luckiness:	number	=	9;

let	happyLucky:	boolean	=	(happiness	>=	7	&&	luckiness	>	
7);
//	Sets	happyLucky	to	true	when	both	conditions	are	true

let	happyOrLucky:	boolean	=	(happiness	>=	7	||	luckiness	>	
7);
//	Sets	happyOrLucky	to	true	when	at	least	one	of	the	
conditions	is	true
console.log("Happy	and	Lucky:	"+happyLucky);
console.log("Happy	or	Lucky:	"+happyOrLucky);

Just	think	of	this	in	words:

A	and	B	implies	both.

A	or	B	implies	either.

The	Not	Operator	(!)
An	additional	Boolean	operator	that	we	have	available	is	the
not	(!)	operator	(also	called	the	negation	operator).
Unlike	 the	 other	 operator,	 this	 operator	 simply	 negates
whatever	comes	next.

!A	&&	B :	 true 	when	 A 	is	 false 	and	 B 	is	 true

!(A	&&	B) :	 true 	when	at	least	one	of	 A 	and	 B 	are	 false

!A	||	!B :	 true 	when	at	least	one	of	 A 	and	 B 	are	 false
(DeMorgan’s	Law)

!(A	&&	B)	||	C :	 true 	when	at	least	one	of	 A 	and	 B 	are
false 	or	any	time	 C 	is	 true

By	 using	 a	 combination	 of	 comparison	 operators,	 logical
connectors,	and	nots	we	can	build	complex	logic	to	test	state
to	use	in	conditionals	and	loops…

A	Complex	Example

/**
	*	Bring	an	umbrella	if	it	is	not	raining
	*	@param	raining	True	if	it	is	raining
	*	@param	temperature	The	temperature	in	degrees	Fahrenheit
	*	@returns	A	message	to	the	user
	*/
function	bringUmbrella(raining:	boolean,	temperature:	
number):	string	{
				if	(!raining	&&	temperature	<	70)	{
								return	"Bring	an	umbrella";
				}	else	if	(raining	&&	temperature	<	70)	{
								return	"Bring	an	umbrella	and	a	jacket";
				}	else	if	(!raining	&&	temperature	>=	70)	{
								return	"No	need	for	an	umbrella";
				}	else	{
								return	"No	need	for	an	umbrella,	but	bring	a	
jacket";
				}
}

test("Test	bringUmbrella",	()	=>	{
				expect(bringUmbrella(false,	60)).toBe("Bring	an	
umbrella");
				expect(bringUmbrella(true,	60)).toBe("Bring	an	umbrella	
and	a	jacket");
				expect(bringUmbrella(false,	80)).toBe("No	need	for	an	
umbrella");
				expect(bringUmbrella(true,	80)).toBe("No	need	for	an	
umbrella,	but	bring	a	jacket");
});

Summary

An	 if 	statement	is	a	way	to	alter	program	flow	based	on
the	value	of	some	boolean	expression.

An	 else 	branch	can	be	added	to	an	 if 	statement	to
handle	the	case	when	the	expression	is	 false .

We	can	use	comparison	operators	to	compare	values	and
logical	operators	to	combine	multiple	conditions.

An	 if 	statement	can	be	nested	inside	of	a	function	to
create	complex	logic.

1.4)	Strings
A	 string	 is	 sequence	 of	 character	 values	used	 to	 store	 text
data.

Overview
The	 string 	type	is	a	primitive	data	type	in	Typescript.
We	can	declare	a	variable	to	be	of	type	string	directly:

let	username:	string	=	"gauss";
let	password:	string	=	'captain';

{:	.no-run}

Notice	 how	 we	 can	 use	 either	 single	 or	 double	 quotes	 to
define	a	string.

String	Methods	and	operations
There	are	several	functions	which	we	can	use	to	operate	on
strings	in	Typescript.
We	will	 look	at	 some	of	 the	most	 common	ones	briefly,	 but
there	are	actually	many	more!

charAt,	indexOf,	and	lastIndexOf
You	can	use	 the	 charAt ,	 indexOf ,	and	 lastIndexOf 	 methods
to	get	information	about	the	characters	in	a	string.

charAt(index) :	This	method	will	return	character	at	the
specified	index,	or	an	empty	string	if	the	index	is	out	of
range.

indexOf(value) :	This	method	will	return	the	index	of	the
first	occurrence	of	the	specified	value,	or	-1	if	not	found.

lastIndexOf(value) :	This	method	will	return	the	index	of
the	last	occurrence	of	the	specified	value,	or	-1	if	not

found.

As	a	more	concrete	example:

let	myStr:	string	=	"Hello	World";

console.log(myStr.charAt(2));	//	"l"
console.log(myStr.indexOf("o"));	//	4
console.log(myStr.indexOf("x"));	//	-1
console.log(myStr.indexOf("lo"));	//	3
console.log(myStr.lastIndexOf("o"));	//	7
console.log(myStr.lastIndexOf("z"));	//	-1

Square	Bracket	Access	of	Strings
Besides	 using	 the	 charAt 	 method,	 you	 can	 also	 access
individual	characters	in	a	string	using	square	brackets.

let	myStr:	string	=	"Hello	World";

console.log(myStr[2]);	//	"l"
console.log(myStr[4]);	//	"o"
console.log(myStr[10]);	//	"d"

No	Negative	Indices	with	Brackets

Unlike	 Python,	 you	 cannot	 access	 characters	 in	 a	 string
using	negative	indexes	in	TypeScript.	The	result	will	be	the
special	value	 undefined .

let	myStr:	string	=	"Hello	World";

console.log(myStr[-1]);	//	undefined
console.log(myStr[-2]);	//	undefined

With	 the	 charAt 	 method,	 the	 result	 would	 be	 an	 empty
string	instead.

Taking	Parts	of	Strings	with	 slice
You	can	use	the	 slice 	method	to	extract	parts	of	a	string.

The	first	parameter	is	the	starting	slice	position.

The	second	parameter	is	the	ending	slice	position	(not
included	in	the	result).

If	the	second	parameter	is	omitted,	the	slice	will	go	to	the
end	of	the	string.

If	the	first	parameter	is	negative,	it	will	be	treated	as	an
offset	from	the	end	of	the	string.

If	the	second	parameter	is	negative,	it	will	be	treated	as
an	offset	from	the	end	of	the	string.

let	myStr:	string	=	"Hello	World";

console.log(myStr.slice(2));					//	"llo	World"
console.log(myStr.slice(2,	5));		//	"llo"
console.log(myStr.slice(-1));				//	"d"
console.log(myStr.slice(-3));				//	"rld"
console.log(myStr.slice(0,	-1));	//	"Hello	Worl"
console.log(myStr.slice(5,	-3));	//	"	World"
console.log(myStr.slice(5,	3));		//	""
console.log(myStr.slice(4,	5));		//	"o"

Indexes	and	Slices	in	Strings

It	 can	 be	 difficult	 to	 remember	 how	 string	 slicing	 works,
compared	to	regular	 indexes.	The	 image	above	should	help
you	remember	how	to	slice	strings:

When	indexing,	put	numbers	directly	below	the
characters

When	slicing,	put	the	numbers	between	the	characters.

let	message:	string	=	"What	time	is	it?";

console.log(message.slice(0,	4));	//	"What"
console.log(message.slice(5,	9));	//	"time"
console.log(message.slice(-1));	//	"?"
console.log(message.slice(-3));	//	"it?"
console.log(message.slice(0,	-1));	//	"What	time	is	it"
console.log(message.slice(5,	-3));	//	"time	is"
console.log(message.slice(5,	3));	//	""
console.log(message.slice(4,	5));	//	"	"

Combining	Strings	with	 concat
The	 concat 	 method	will	 combine	 two	 separate	 strings	 and
return	that	combined	string.

let	myStr1:	string	=	"Hello";
let	myStr2:	string	=	"World";

console.log(myStr1.concat(myStr2));						//	"HelloWorld"
console.log(myStr1.concat("	",	myStr2));	//	"Hello	World"
console.log(myStr2.concat(myStr1));						//	"WorldHello"
console.log(myStr2.concat(",",	myStr1));	//	"World,Hello"

Combining	Strings	with	 +
Note	 that	 you	 can	 also	 use	 the	 + 	 operator	 to	 concatenate
strings:

let	myStr1:	string	=	"Hello";
let	myStr2:	string	=	"World";

let	combined:	string	=	myStr1	+	"	"	+	myStr2;
console.log(combined);	//	"Hello	World"

The	advantages	of	 concat 	are	that:

You	can	combine	more	than	two	strings	at	once	with	a
single	operation

You	can	make	sure	that	you	are	only	combining	strings
(no	numbers	or	other	types),	since	 concat 	only	works
with	strings.	With	the	 + 	operator,	you	can	accidentally
add	numbers	to	strings,	which	can	lead	to	unexpected
results	(since	JavaScript	will	convert	the	number	to	a
string	and	concatenate	it).

The	 substring 	method
Assume	the	string	 let	myStr="Hello	World";

split():	Splits	the	specified	String	object	into	an	array	of
strings.

myStr.split("	");	//returns	the	array	[“Hello","World”]

substring():	Returns	character	of	string	between	two
define	indexes.

myStr.substring(2);	//	returns	“llo	World”

myStr.substring(2,5);	//	returns	“llo”

Note:	 the	 first	 parameter	 is	 the	 index	 of	 the	 first
character	to	return,	and	the	second	is	the	 index	of
the	first	character	NOT	returned.

The	 substring 	and	 slice 	methods	are	very	similar,	with	two
differences:

The	main	difference	is	that	if	the	second	parameter	is
less	than	the	first,	the	 substring 	method	will	swap	them.
The	 slice 	method	will	return	an	empty	string	in	this
case.

The	 substring 	method	does	not	support	negative	indexes.

The	 toLowerCase 	and	 toUpperCase 	methods
The	 toLowerCase 	and	 toUpperCase 	methods	will	create	a	new
string	with	all	characters	 in	either	 lowercase	or	uppercase,
respectively.

let	myStr:	string	=	"Hello	World";

console.log(myStr.toLowerCase());	//	"hello	world"
console.log(myStr.toUpperCase());	//	"HELLO	WORLD"

Notice	how	the	methods	take	no	arguments;	the	parentheses
are	 still	 required	 to	 call	 the	method,	 even	 with	 nothing	 in
between	 them.	 These	 are	 nullary	 methods	 because	 they
take	no	arguments.

Number	to	String	Conversion	with
parseInt 	and	 +
What	if	the	string	contains	a	number	and	we	want	to	convert
it	to	a	number	type?	We	can	use	two	approaches:

parseInt :	This	function	will	convert	a	string	to	a	number,
but	only	if	the	string	contains	a	valid	number.	If	the
string	does	not	contain	a	valid	number,	 parseInt 	will
return	 NaN .

+ :	The	unary	addition	operator	can	be	placed	before	a
value	to	convert	the	value	to	a	number.	This	is	different
than	the	binary	addition	operator,	which	will	add	two
numbers	or	strings	together.	The	unary	addition	operator
is	less	explicit	than	 parseInt ,	but	it	is	a	common
shorthand.

let	myNumStr:	string	=	"42";

let	myNum:	number	=	parseInt(myNumStr);	//	this	function	
does	the	trick
let	myNum2:	number	=	+myNumStr;	//	this	also	works,	but	is	
less	explicit
console.log(myNum);
console.log(myNum2);

If	 myNumStr 	 did	 not	 contain	 a	 valid	 number,	 the	 parseInt

function	would	return	the	special	value	 NaN 	to	specify	"Not
a	number".

let	myNumStr:	string	=	"Hello";

let	myNum:	number	=	parseInt(myNumStr);	//	NaN
let	myNum2:	number	=	+myNumStr;	//	NaN
console.log(myNum);
console.log(myNum2);

Number	to	String	Conversion	with
toString

If	we	want	 to	go	 the	other	way,	and	convert	a	number	 to	a
string,	we	can	use	the	 toString 	method	to	explicitly	convert
a	non-string	value	to	a	string.

let	myNum:	number	=	42;

let	myNumStr:	string	=	myNum.toString();
console.log(myNumStr);

The	 toString 	method	 is	available	on	all	non-string	 types	 in
TypeScript,	 by	 default.	 That	 means	 we	 can	 use	 it	 on
numbers,	booleans,	and	other	more	complex	types	(although
that	is	not	always	useful,	as	we	will	see).

Implicit	String	Conversion	with	 +
If	you	use	the	binary	 + 	operator	to	combine	a	string	and	a
number,	 the	 number	 will	 be	 converted	 to	 a	 string
automatically.

let	myNum:	number	=	42;
let	myStr:	string	=	"The	answer	is	"	+	myNum;
console.log(myStr);

This	 can	 be	 a	 useful	 shorthand,	 but	 it	 can	 also	 lead	 to
unexpected	results	if	you	are	not	careful.	For	example,	if	you
add	a	number	to	a	string,	the	number	will	be	converted	to	a
string	and	concatenated	to	the	other	string.

let	myNum:	number	=	42;
let	myStr:	string	=	"The	answer	is	"	+	myNum	+	1;
console.log(myStr);	//	"The	answer	is	421"

Strings	Are	Immutable
The	 slice 	method	does	NOT	modify	 the	 string.	 In	 fact,	 no
methods	 or	 functions	 can	 modify	 a	 string	 in	 TypeScript.
Instead,	they	return	a	new	string.

let	myStr:	string	=	"Hello	World";

myStr.slice(1,	3);	//	"el"
console.log(myStr);	//	"Hello	World"

Other	String	Methods
There	are	MANY	other	methods	available	to	the	string	type,
but	 these	 are	 some	of	 the	more	useful	 and	 common.	Some
other	useful	ones	we	will	not	cover	in	detail	here	are:

startsWith(pattern) / endsWith(pattern) :	Check	if	a	string
starts	or	ends	with	a	certain	value

includes(pattern) :	Check	if	a	string	contains	a	certain
value	anywhere	inside

padStart(length,	padString) / padEnd(length,	padString) :
Add	characters	to	the	start	or	end	of	a	string.

replace(pattern,	replacement) :	Replace	a	pattern	with	a
new	string

replaceAll(pattern,	replacement) :	Replace	all	occurrences
of	a	pattern	with	a	new	string

search(pattern) :	Find	the	index	of	a	pattern	in	a	string

trim / trimStart / trimEnd :	Remove	whitespace	from	the
start,	end,	or	both	ends	of	a	string

split(separator) :	Split	a	string	into	an	array	of	strings
based	on	a	separator

Summary
Strings	are	a	fundamental	data	type	in	TypeScript,	used
to	store	text	data.

There	are	many	methods	available	to	manipulate	strings,
and	we	have	only	covered	a	few	of	the	most	common
ones	here:

charAt ,	 indexOf ,	and	 lastIndexOf 	to	get	information
about	characters	in	a	string

slice 	to	extract	parts	of	a	string

concat 	and	 + 	to	combine	strings

substring 	to	get	a	substring	of	a	string

toLowerCase 	and	 toUpperCase 	to	change	the	case	of	a
string

parseInt 	and	 + 	to	convert	a	string	to	a	number

toString 	to	convert	a	number	to	a	string

slice 	to	extract	parts	of	a	string

Strings	are	immutable	in	TypeScript,	so	any	method	that
modifies	a	string	will	return	a	new	string	instead	of
modifying	the	original.

2)	Loops	and	Arrays

2.1)	Loops
A	loop	is	a	control	flow	structure	in	programming	that	allows
us	to	repeat	a	section	of	code	until	some	boolean	condition	is
met.

Overview
In	programming	we	often	have	to	do	things	more	than	once.
Rather	 than	 copying	 and	 pasting	 our	 code	 over	 and	 over
again,	 we	 can	 use	 a	 loop	 to	 run	 the	 same	 section	 of	 code
repeatedly.
There	are	 two	basic	 types	of	 loops	 that	we	will	 look	at	 the
while	loop	and	the	for	loop.

While	Loops
The	 while	 loop	 allows	 us	 to	 repeat	 the	 following	 block	 of
code	(code	in	braces	{})	while	the	expression	is	true.

A	simple	while	loop	example
Consider	 the	 following	 function	 which	 implements	 a
countdown.	This	can	be	done	easily	with	a	while	loop.

function	countdown(count:number){
		while(count>0){
				console.log(count);
				count--;
		}
		console.log("beep	beep	beep!");
}
countdown(10);

Notice	that	we	are	calling	the	function	countdown	passing	in
the	 number	 we	 want	 to	 count	 down	 from.	 The	 number	 is
then	 used	 in	 the	 condition	 of	 the	 while	 loop	 so	 that	 the

function	 can	 count	 down	 from	 any	 valid	 non-negative
integer.

Note	that	we	use	 console.log 	to	display	information	to
the	 user.	 For	 now,	 this	 will	 be	 our	 primary	 way	 to
display	something	from	our	programs.

Exercise
See	 if	 you	 can	 complete	 the	 function	 sillyMultiply	 and	 get
the	 answer	 20.	 You	 should	 do	 this	 using	 loops	 and	 you
should	 not	 use	 multiplication	 in	 your	 function.	 You	 should
repeatedly	add	the	first	number	to	itself	the	correct	number
of	times.

function	sillyMultiply(x:number,y:number):number{
				//What	goes	here?
}
console.log(sillyMultiply(5,4));

View	solution

For	Loops

The	other	primary	 type	of	 loop	we	will	be	discussing	 is	 the
for	loop.
While	you	have	seen	 for	 loops	 in	other	 languages,	 they	are
somewhat	different	 in	 typescript,	and	there	are	a	couple	of
different	versions.
Let’s	start	with	the	simplest	form.

The	initializer	is	simply	a	variable	declaration	and
initialization	like	you	might	use	elsewhere	in	the
program.

The	expression	is	the	same	as	the	expression	we	used	for
our	while	loop.	The	loop	will	continue	to	execute	so	long
as	the	expression	is	true.

The	update	statement	will	usually	modify	the	loop
variable	so	that	it	approaches	a	value	that	will	cause	the
loop	to	exit.

A	simple	for	loop	example
Let’s	 take	another	 look	at	 the	countdown	example,	but	 this
time,	using	a	for	loop:

function	countdown(count:number){
		for	(let	i	=	count;	i	>	0;	i--){
				console.log(i);
		}
		console.log("beep	beep	beep!");
}
countdown(10);

Note:	i--	is	just	shorthand	for	i=i-1	(and	i++	is	similarly
shorthand	for	i=i+1)

Our	initializer	sets	our	loop	variable	(i)	to	count

Our	expression	continues	the	loop	so	long	as	count
remains	>0

Our	update	statement	decrements	the	value	of	i	each
time	the	loop	runs

Exercise
See	if	you	can	complete	the	function	sillyMultiply	again	and
get	 the	 answer	 20.	 You	 should	 do	 this	 using	 for	 loops	 and
you	 should	 not	 use	 multiplication	 in	 your	 function.	 You
should	repeatedly	add	the	 first	number	 to	 itself	 the	correct
number	of	times.

function	sillyMultiply(x:number,y:number):number{
				//What	goes	here?
}
console.log(sillyMultiply(5,4));

View	solution

Summary
We	 can	 create	 more	 complex	 program	 logic	 by	 repeating
sections	of	our	code	to	solve	problems.	This	is	important	for
many	 reasons	 including	 readability,	 reducing	 potential	 for
errors,	 and	 variability	 of	 the	 number	 of	 times	 something
must	 execute	 based	 on	 inputs.	 The	 two	 primary	 loops	 in
Typescript	are	the	while	 loop	and	the	for	 loop.	This	section
examined	 the	while	 loop,	and	one	of	 the	 formats	of	 the	 for
loop.	We	will	examine	the	other	for	 loop	in	the	next	section
as	 it	 explicitly	 operates	 on	 collections	which	we	will	 cover
next.

2.2)	Arrays
An	array	is	an	ordered	list	of	values	of	the	same	type	where
each	element	in	the	array	can	be	accessed	using	its	index.

Overview
Arrays	 are	 an	 extremely	 important	 data	 structure	 because
they	allow	us	 to	 store	 a	 collection	 of	 objects.	We	can	build
arrays	 out	 of	 any	 built-in	 or	 user-defined	 type	 we	 want,
including	out	of	other	arrays.

In	 Typescript,	 the	 size	 of	 the	 array	 does	 not	 need	 to	 be
defined.	 It	 will	 grow	 as	 necessary	 to	 hold	 the	 data	 placed
into	it	(NOT	TRUE	IN	C	or	C++).

Each	element	in	the	array	has	an	index	(starting	at	0)	which
we	can	use	to	access	the	individual	elements

i.e.	 if	an	array	has	10	elements,	 the	 indexes	would	be
0-9.

Defining	Arrays

In	typescript	we	define	an	array	just	like	any	other	variable

//define	a	single	string	containing	the	value	Lisa
let	name:string="Lisa";

//define	an	array	of	strings	containing	the	values
//Lisa,	Kaitlin	and	John
let	names:string[]=["Lisa","Kaitlin","John"];

{:	.no-run}

Note	that	we	type	the	variable	as	an	array	of	strings	by
using	 the	 type	 string[]	where	 []	 specifies	 that	we	 are
creating	an	array	of	that	type.

Using	Arrays
Consider	 the	 following	 declaration	 of	 the	 variable	 names.
It’s	 type	 denotes	 an	 array	 of	 strings,	 and	we	 initialize	 that
array	with	 three	elements,	 the	strings	 "Lisa",	 "Kaitlin",	and
"John".	The	array	has	3	elements,	so	 it	will	have	 indices	 0,
1,	and	2 .	When	the	code	accesses	the	element	with	index	1,
it	is	requesting	the	second	element	in	the	array	(Kaitlin)	and
thus	the	following	code	will	print	out	the	string	Kaitlin.

//define	an	array	of	strings	containing	the	values
//Lisa,	Kaitlin	and	John
let	names:string[]=["Lisa","Kaitlin","John"];
console.log(names[1]);

Since	we	can	access	an	element	of	the	array	by	its	index,	we
can	also	modify	that	value	using	the	index.

//define	an	array	of	strings	containing	the	values
//Lisa,	Kaitlin	and	John
let	names:string[]=["Lisa","Kaitlin","John"];
names[1]="Jan";
console.log(names[1]);

We	 would	 expect	 this	 code	 to	 print	 out	 Jan.	 Initially,	 the
second	element	is	Kaitlin,	but	the	second	line	replaces	the
string	 in	 position	 2	 with	 Jan.	 When	 we	 then	 access	 the
second	element	of	the	array	to	display	it,	we	get	the	updated
value	from	the	array	at	that	position.

Array	Methods	and	Properties
There	are	a	number	of	methods	that	operate	on	arrays.	We
will	cover	some	of	the	simple	ones	here.	These	should	allow
us	to	add	elements,	remove	elements,	and	otherwise	modify
an	array.

The	 idea	 of	 an	 object	 (like	 an	 array)	 having	 its	 own
methods	 which	 operate	 on	 it	 will	 be	 central	 to	 our
discussion	of	object	oriented	programming	later	in	the
text.

The	length	property
We	can	get	 the	current	number	of	 elements	 in	an	array	by
using	the	length	property:

let	fruits:	string[]	=	["apple","banana","orange"];
let	size:	number=fruits.length;
console.log(size);	//	

Note	 that	 length	 is	NOT	a	 function,	 but	 rather	 it	 is	 a
property	of	the	array	so	we	don’t	use	().

The	push	method
Using	push	we	can	add	elements	to	the	end	of	an	array:

let	fruits:	string[]	=	["apple",	"banana"];
fruits.push("orange");
console.log(fruits);		//Output:	["apple",	"banana",	
"orange"]

Note	the	.	notation.	We	will	learn	more	about	this	later.

The	pop	method
Using	 pop	 we	 can	 remove	 elmeents	 from	 the	 end	 of	 an
array.	The	pop	 method	 not	 only	 removes	 the	 last	 element,
but	it	returns	that	value	from	the	pop	function.

let	fruits:	string[]	=	["apple",	"banana","orange"];
let	last=fruits.pop();
console.log(fruits);			//	Output:	["apple",	"banana"];
console.log(last);					//	Output:	orange

The	shift/unshift	methods
Analogous	 to	push	and	pop,	shift	and	unshift	work	on	 the
front	of	the	list.

let	fruits:	string[]	=	["apple",	"banana"];
fruits.unshift("orange");
console.log(fruits);				//	Output:	["orange","apple",	
"banana"];
let	first=fruits.shift();
console.log(fruits);				//	Output:	["apple",	"banana"];
console.log(first);					//	Output:	orange

Note:	Adding	or	removing	to/from	the	front	of	a	list	or
array	 is	 generally	 inefficient	 compared	 to	working	 on
the	 end	 of	 the	 list.	 This	 largely	 depends	 on	 the
implementation	of	arrays,	but	is	generally	true.

The	splice	method
The	 splice	 method	 gives	 us	 a	 mechanism	 for	 editing	 the
middle	of	an	array.	With	the	splice	method,	we	can	remove,
replace,	or	insert	elements	in	the	middle	of	an	array.

array.splice(index,[howMany],[element1],[...,	elementN]);

{:	.no-run}

index:	The	array	index	at	which	to	start	changing	the
array

howMany:	The	number	of	array	elements	to	remove
starting	at	index,	defaults	to	all	of	them	if	no	value	is
passed.

element1…elementN:	0	or	more	elements	to	add	to	the
array	at	the	index.

If	we	only	use	 the	 first	parameter	which	 is	 required,	 splice
will	 remove	 that	element	and	all	elements	after	 it	 from	the
array.	It	also	returns	what	was	removed.

let	fruits:	string[]	=	["apple",	
"banana","orange","grape","mango"];
let	removed=fruits.splice(2);
console.log(fruits);				//["apple",	"banana"];
console.log(removed);			//["orange",	"grape",	"mango"];

If	we	set	the	second	argument,	then	splice	only	removes	that
number	of	items:

let	fruits:	string[]	=	["apple",	
"banana","orange","grape","mango"];
let	removed=fruits.splice(2,2);
console.log(fruits);		//["apple",	"banana",	"mango"]
console.log(removed);	//["orange",	"grape"]

Any	additional	arguments	will	be	added	 to	 the	array	at	 the
index	provided	after	the	deletion	has	been	completed.

let	fruits:	string[]	=	["apple",	
"banana","orange","grape","mango"];
let	removed=fruits.splice(2,1,"pear","kiwi");
console.log(fruits);		//["apple",	"banana",	"pear",	"kiwi",	
"grape",	"mango"]
console.log(removed);	//["orange"]

Finally,	 if	 we	 pass	 0	 as	 the	 second	 argument,	 then	 splice
simply	 inserts	 element0,…,elementN	 into	 the	 array	 at	 the
index	position:

let	fruits:	string[]	=	["apple",	"banana","orange"];
let	removed=fruits.splice(2,0,"pear","kiwi");
console.log(fruits);		//["apple",	"banana",	"pear",	"kiwi",	
"orange"]
console.log(removed);	//[]

Merging	Arrays
There	are	a	number	of	ways	 to	merge	arrays	 in	 typescript,
but	one	of	the	simplest	is	to	use	the	spread	operator	(three
dots	 ...).	The	spread	operator	extracts	the	elements	of	the
array.	This	 allows	 the	 elements	 to	 be	 combined	 into	 a	 new
array.

let	fruits:	string[]	=	["apple",	"banana","orange"];
let	vegies:	string[]	=	["carrot",	"potato"];
let	allFood:	string[]	=	[...fruits,	...vegies];
console.log(allFood);			//["apple",	"banana",	"orange",	
"carrot",	"potato"]

The	spread	operator	can	be	used	any	time	you	need	to
extract	the	elements	of	an	array.

Arrays	of	arrays
Since	 arrays	 are	 just	 collections	 of	 objects,	 and	 arrays	 are
themselves	objects,	we	can	build	arrays	out	of	other	arrays,
thus	 creating	 multi-dimensional	 arrays.	 Consider	 the
example:

let	fruits:	string[]	=	["apple",	"banana","orange"];
let	vegies:	string[]	=	["carrot",	"potato"];
let	allFood:	string[][]	=	[fruits,	vegies];
console.log(allFood);			//[["apple",	"banana",	"orange"],	
["carrot",	"potato"]]

In	 this	 example	 allFood	 is	 an	 array	 of	 string	 arrays
containing	two	elements.

Each	element	is	an	array	of	strings

allFood[0]	has	3	string	elements

allFood[1]	has	2	string	elements

More	to	see
There	are	many	other	methods	for	manipulating	arrays.	We
will	cover	many	of	these	in	later	chapters.	This	set	should	be
sufficient	for	the	time	being.

Specialized	loops	for	working
with	arrays
One	 important	 use	 of	 loops	 is	 to	 iterate	 through	 the
elements	 of	 an	 array.	 We	 can	 certainly	 do	 this	 using	 our
existing	knowledge	of	loops	and	arrays.

let	fruits:	string[]	=	["apple",	"banana","orange"];
let	size:number=fruits.length;
for	(let	i	=	0;	i	<	size;	i++){
		console.log(fruits[i]);
}

This	works	and	is	perfectly	acceptible,	but	there	is	a	special
version	of	the	for	loop	which	can	be	used	to	iterate	through
the	elements	of	an	array.

We	 can	 use	 this	 other	 version	 called	 a	 for…of	 loop	 to
automatically	iterate	through	the	array.

let	fruits:	string[]	=	["apple","banana","orange"];
for	(let	fruit	of	fruits){
		console.log(fruit);
}

This	 is	much	 cleaner,	 doesn’t	 require	 getting	 the	 length	 of
the	array,	and	accesses	every	element	 in	order	 just	 like	the
previous	version.

It	 is	 common	 to	 use	 the	 for…of	 loop	 syntax	 when
iterating	through	the	elements	of	an	array.

Summary
Arrays	provide	a	simple	data	structure	to	store	collections	of
objects.	These	objects	can	be	simple	 types	 (string,	boolean,
number),	 or	 complex	 types	 including	 other	 arrays.	We	 can
access	elements	in	the	array	by	their	index	which	is	0	based

(i.e.	0	is	first	element).	There	are	also	a	number	of	functions
to	mutate	the	array	by	adding	and	removing	elements	to	the
back,	 front,	 or	 middle	 of	 an	 array.	 Array	 elements	 can	 be
extracted	 from	 an	 array	 using	 the	 spread	 (…)	 operator.	 A
special	 version	 of	 the	 for	 loop	 (for…of)	 can	 be	 used	 to
automatically	iterate	through	the	elements	of	an	array.

3)	Data	Classes

3.1)	Introduction
Data	Classes	 allow	us	 to	 combine	data	 into	 a	grouping	or
class	and	use	that	grouping	as	a	data	type	in	our	programs.

Complex	Types
If	we	wish	 to	 combine	 data	 into	 a	more	 complex	 type	 that
represents	 the	 combination	 of	 various	 related	 data	 items,
then	there	are	two	methods	available	to	us	in	Typescript

The	interface

Interfaces	describe	the	data	that	goes	into	an	object
and	its	types,	but	do	not	provide	default	values,	or	any
additional	logic.

The	class

Classes	also	describe	the	data	that	goes	into	an
object,	but	provide	a	mechanism	to	set	default	values,
construct	the	objects	dynamically,	and	even	define
methods	to	operate	on	the	internal	data.

We	 will	 discuss	 interfaces	 and	 how	 and	 when	 to	 use
them,	later	in	the	text.	For	the	time	being	we	will	focus
on	classes,	and	specifically	Data	Classes.

Classes	in	Typescript
To	declare	a	class	in	typescript,	we	use	the	 class 	keyword.
The	 structure	 of	 a	 class	 internally	 is	 a	 set	 of	 data	 objects
that	make	up	the	class.

class	MyType{
				//list	of	variables	and	types
				//constructor	method	to	create	an	instance
				//0	or	more	methods	which	can	operate	on	
							//the	member	variables	in	the	class
}

{:	.no-run}

Remember	 a	 class	 is	 a	 definition	 of	 a	 type.	 You	must
create	an	instance	of	that	type	in	order	to	use	it.
We	can	define	a	variable	of	our	new	type	and	use	it.

let	myObj:MyType=new	MyType();

{:	.no-run}

Motivation
Some	things	things	belong	together	as	they	describe	a	more
complex	thing	that	we	want	to	represent.

As	an	example,	consider	a	simple	drawing	program	we	might
want	to	build.

Points	have	an	x	and	y	coordinate	which	are	numbers

Lines	contain	a	start	and	end	point

Rectangles	can	be	defined	by	2	points	(opposite	corners)

Polygons	can	be	defined	by	an	arbitrary	list	of	points	(The
vertices)

Each	of	these	objects	may	have	a	color	associated	with	it.
(Color	itself	might	contain	components	for	Red,	Green,
and	Blue	as	numbers.

Summary

Sometimes	 it	makes	 sense	 to	group	data	 together.	 In	 these
cases	 Typescript	 provides	multiple	mechanisms	with	which
to	 do	 that.	 In	 the	 section	 we	 have	 introduced	 the	 idea	 of
creating	a	class	that	represents	a	set	of	heterogeneous	data.
(i.e.	strings,	numbers,	booleans,	arrays,	and	other	classes).

3.2)	Basic	Data	Classes
Data	Classes	allow	us	to	combine	data	into	a	grouping	and
use	that	grouping	as	a	data	type	in	our	programs.

Drawing	Program	Classes

Color	class
If	we	examine	the	objects	we	have	proposed	for	our	drawing
program	 (points,	 lines,	 rectangles,	 polygons,	 color)	we	 can
see	that	just	about	everything	has	a	color.	The	definition	for
a	 type	 that	 represents	 color	 would	 be	 useful	 as	 then	 we
could	 group	 the	 things	 that	 make	 up	 a	 color.	 For	 our
example	we	want	to	store	a	color	as	three	numbers	between
0	and	255	representing	the	red,	green,	and	blue	intensities.

Our	class	should	contain	3	numbers	(Red,	Green,	and	Blue).
We	 can	 define	 our	 class	 as	 described	 previously,	 since	 this
contains	only	the	primitive	type	number.

class	Color{
				public	red:number=0;
				public	green:number=0;
				public	blue:number=0;
}

{:	.no-run}

Note	the	public	keyword	before	each	member	variable
(sometimes	called	a	property)	of	the	class.	This	denotes
that	 the	 property	 is	 accessible	 by	 methods	 and	 code
outside	the	class.	We	could	also	mark	 it	as	private	or
protected.

As	 you	 can	 see,	 our	 class	 definition	 is	 quite	 simple.	 We
simply	 group	 the	 three	 components	 together	 and	 give	 it	 a
name.	We	can	then	create	objects	of	this	type	with	the	new
keyword.

let	myColor:Color=new	Color();

{:	.no-run}

And	for	a	full	example:

class	Color{
			public	red:number=0;
			public	green:number=0;
			public	blue:number=0;
}
//We	can	use	our	new	class	to	create	a	color	object:
let	myColor:Color=new	Color();
//Then	we	can	access	its	public	members
myColor.red=255;
myColor.blue=128;
myColor.green=10;
console.log(myColor);

Note:	If	red,	green,	and	blue	had	been	labeled	private,
then	we	 could	 not	 have	 accessed	 them.	More	 on	 this
later	in	the	text.

Point	class
A	 point	 requires	 coordinates,	 x	 and	 y.	 These	 are	 both
numbers.	 It	 also	 requires	 a	 color	 if	 we	 want	 points	 to	 be
displayable	(more	on	this	later).	We	already	have	a	definition
for	a	color,	so	we	can	use	that	to	define	a	point.

class	Color{
				public	red:number=0;
				public	green:number=0;
				public	blue:number=0;
}
class	Point{
				public	x:number=0;
				public	y:number=0;
				public	color:Color=new	Color();
}
let	myPoint:Point=new	Point();
myPoint.x=100;
myPoint.y=100;
myPoint.color.red=255; ​myPoint.color.blue=128;
myPoint.color.green=10;
console.log(myPoint);

Notice	 that	we	use	 the	 class	Color	 inside	of	 the	 class
Point.	 This	 is	 referred	 to	 as	 composition	 and	 is	 a
critical	 concept	 in	 understanding	 classes	 and	 Object
Oriented	Programming.

We	can	build	up	complex	objects	by	including	other	objects
inside	of	them.	Now	every	point	will	have	a	position	(x,y)	and
a	color	contained	inside	the	point	itself.

Summary

Complex	objects	can	be	built	from	simpler	ones	by	creating
a	class	to	represent	a	new	type.

3.3)	Data	Class
Constructors
Data	Classes	 allow	us	 to	 combine	data	 into	 a	grouping	or
class	and	use	that	grouping	as	a	data	type	in	our	programs.

Class	constructors
So	far,	to	create	a	class	we:

Create	an	instance	of	a	class	with	the	new	keyword	and
store	it	in	a	variable

Use	the	variable	to	modify	the	properties	of	the	class
individually

For	our	Color	example,	this	means	setting	red,	green,
and	blue	independently.

It	 would	 be	much	 easier	 to	 have	 a	 function	 that	 takes	 the
parameters	we	want	 to	 set	 and	 updates	 the	 object	 as	 it	 is
being	created.

class	Color{
			public	red:number=0;
			public	green:number=0;
			public	blue:number=0;
			constructor(red:number,g:number,b:number){
						this.red=red;
						this.green=g;
						this.blue=b;
			}
}

{:	.no-run}

By	giving	our	class	a	constructor,	we	can	create	an	instance
of	the	class	and	initialize	its	values	in	one	line:

let	veryRed:Color=new	Color(255,0,0);
let	veryBlue:Color=new	Color(0,0,255);
let	anotherColor:Color=new	Color(27,115,98);
console.log(veryRed,veryBlue,anotherColor);

{:	.no-run}

Note	 that	 now	 we	 are	 creating	 and	 initializing	 our
objects	in	one	line.

While	 much	 better,	 the	 definition	 of	 Color	 still	 seems
repetative.	 While	 100%	 correct,	 Typescript	 gives	 us	 a
shorthand.

class	Color{
			constructor(public	red:number,	public	green:number,	
public	blue:number){
				//Note	we	don’t	need	anything	inside.		This	
automatically	does	everything.
			}
}
//this	behaves	equivalently	in	every	way	to	our	previous	
example.
let	veryRed:Color=	new	Color(255,0,0);
console.log(veryRed);

If	 we	 declare	 the	 parameters	 of	 the	 constructor	 with
the	private	 or	 public	 keywords,	 it	 both	declares	 them
as	 members,	 and	 initializes	 their	 values	 from	 the
values	passed	into	the	constructor.

Note	 that	without	 the	public	or	private	keywords,	 the
parameter	is	just	local	to	the	constructor	function,	but
when	 included,	 the	 parameter	 becomes	 a	 member
variable	 (property)	 and	 gets	 initialized	 to	 the	 value
passed	in.

Back	 to	 the	 drawing	 program,	 we	 can	 now	 rebuild	 our
classes	using	constructors	and	the	Typescript	shorthand.

class	Color{
				constructor(public	red:number,	public	
green:number,public	blue:number){	}
}
class	Point{
				constructor(public	x:number,public	y:number,public	
color:Color){}
}
//	We	can	build	a	point	in	a	few	ways.
let	myPoint:Point=new	Point(100,100,new	Color(0,0,255));		
//create	color	on	the	fly
let	red:Color=new	Color(255,0,0);
let	myOtherPoint:Point=new	Point(200,200,red);		//use	an	
existing	color	object
console.log(myPoint);
console.log(myOtherPoint);

Other	Drawing	classes

What	other	classes	do	we	need:

The	Line	class	simply	needs	two	points	(start	and	end)	and	a
color.	We	 define	 the	 class	 to	 have	 those	 three	 components
and	initialize	them	with	a	constructor

class	Color{
				constructor(public	red:number,	public	
green:number,public	blue:number){	}
}
class	Point{
				constructor(public	x:number,public	y:number,public	
color:Color){}
}
class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}
}
class	Rectangle{
				constructor(public	corner1:Point,public	
corner2:Point,public	color:Color){}
}

{:	.no-run}

Polygons
Now	we	can	represent	basic	shapes	 in	a	coordinate	system
and	each	shape	has	a	color,	but	what	about	polygons.	First,
let’s	list	what	we	know	about	them:

Generalized	polygons	have	3	or	more	points	which	are
connected.

Polygons	have	a	color

Since	 we	 don’t	 know	 how	 many	 points	 there	 are	 to	 start
with,	we	can	represent	the	list	of	points	using	an	array.

class	Polygon{
				constructor(public	points:Point[],public	color:Color){}
}

{:	.no-run}

The	 polygon	 class	 is	 initialized	 by	 and	 contains	 a	 public
member	whose	type	is	an	array	of	Point	classes.	It	also	has
an	instance	of	a	Color	class.

Trying	it	out

class	Color{
				constructor(public	red:number,	public	
green:number,public	blue:number){	}
}
class	Point{
				constructor(public	x:number,public	y:number,public	
color:Color){}
}
class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}
}
class	Rectangle{
				constructor(public	corner1:Point,public	
corner2:Point,public	color:Color){}
}
class	Polygon{
				constructor(public	points:Point[],public	color:Color){}
}
let	red:Color=new	Color(255,0,0);
let	blue:Color=new	Color(0,0,255);
let	points1:Point[]=[new	Point(0,0,red),new	
Point(100,0,red),new	Point(50,100,red)];
let	points2:Point[]=[new	Point(50,100,blue),new	
Point(100,100,blue),new	Point(0,100,blue)];
let	redTriangle:Polygon=new	Polygon(points1,red);
let	blueTriangle:Polygon=new	Polygon(points2,blue);
let	drawing:Polygon[]=[redTriangle,blueTriangle];
console.log(drawing);

With	 this	 code,	 drawing	 represents	 a	 drawing	 with	 two
triangles	 (red	 and	 blue).	 If	 we	 wrote	 a	 program	 to	 render
these	 objects,	we	would	 have	 all	 of	 the	 information	 that	 is

needed.

Summary
To	simplify	the	creation	and	initialization	of	a	data	class,	we
can	provide	a	constructor	method	that	takes	parameters	and
can	be	used	to	set	initial	values	for	the	member	properties.
If	 the	 parameters	 are	 preceeded	 by	 the	 words	 public	 or
private,	 they	 automatically	 become	 member	 variables	 and
get	 initialized	 to	 the	 values	 passed	 to	 the	 constructor.	 The
constructor	is	called	by	using	the	new	keyword	to	create	an
new	instance	of	the	class.

3.4)	Instances	and
References
Data	Classes	 allow	us	 to	 combine	data	 into	 a	grouping	or
class	and	use	that	grouping	as	a	data	type	in	our	programs.

Understanding	Instances	and
References
When	 we	 define	 a	 class	 using	 the	 class	 keyword,	 we	 are
creating	a	type.	This	type	does	not	exist	in	memory,	but	is	a
template	 for	 creating	 objects	 that	 have	 the	 methods	 and
fields	described	in	the	class.	When	we	use	the	new	keyword,
we	create	an	instance	of	the	class	in	memory	and	return	a
reference	to	the	in	memory	object.	If	we	call	new	again,	we
get	a	second	instance	of	the	class	and	a	second	reference	to
the	new	memory	location.

import	{Color,Point,Polygon}	from	'ch2/drawing1';

let	red:Color=new	Color(255,0,0);
let	points1:Point[]=[
				new	Point(0,0,red),
				new	Point(100,0,red),
				new	Point(50,100,red)
];
let	redTriangle:Polygon=
				new	Polygon(points1,red);
console.log(redTriangle);

Examining	 this	 code	 in	more	 detail,	we	 see	 that	 each	 time
new	is	called,	we	are	creating	an	instance	of	the	class.	That
means	that	each	time	we	call	new,	we	are	allocating	a	new
chunk	of	memory	to	hold	the	values	of	that	instance.	What	is
returned,	 is	 not	 the	 value	 of	 the	 class,	 but	 a	 reference	 to
the	created	object.

Consider	the	following	code:

let	red:Color=new	Color(255,0,0);
let	point:Point=new	Point(0,0,red);
let	point2:Point=point;

{:	.no-run}

Graphically,	this	looks	like:

What	 would	 happen	 if	 we	 update	 point.x.	 In	 this	 case	 we
would	also	update	the	instance	pointed	to	by	point2,	because
they	are	 the	same	 instance.	When	we	set	 point2=point; 	 we
are	 setting	 the	 variable	 point2	 to	 contain	 the	 reference
stored	 in	point,	and	thus	 they	reference	 the	same	chunk	of
memory	 allocated	 by	 the	 one	 and	 only	 call	 to	 ```new
Point(…).

Let’s	see	that	in	action.

import	{Color,Point}	from	'ch2/drawing1';

let	red:Color=new	Color(255,0,0);
let	point:Point=new	Point(0,0,red);
let	point2:Point=point;
point.x=100;
console.log(point2);

As	you	can	see,	updating	point	updates	the	memory	location
referenced	 by	 point	 which	 is	 the	 same	 memory	 location
referenced	 by	 point2.	 In	 other	 words,	 we	 only	 have	 ​one
point,	but	we	have	two	references	or	aliases	to	that	point.
Changing	either	 one,	 changes	 the	 one	and	only	 object	 that
the	variables	point	and	point2	refer	to.

Note:	Sometimes	this	is	what	we	want,	but	sometimes
IT	IS	NOT!!!

Later,	we	will	 look	 at	 other	methods	 to	 create	 new	objects
based	on	existing	objects,	but	for	now,	we	would	have	to	call
new	again	and	set	point2	to	that	new	object,	then	update	its
properties	with	the	properties	of	point.

import	{Color,Point}	from	'ch2/drawing1';

let	red:Color=new	Color(255,0,0);
let	point:Point=new	Point(0,0,red);
let	point2:Point=new	Point(point.x,point.y,point.color);
point.x=100;
console.log(point);
console.log(point2);

This	is	a	shallow	copy	of	an	object	as	we	are	only	copying
the	top	level.
This	will	make	a	new	object,	but	only	copy	 the	 top	 level	or
primitive	 types	 (number,	 boolean,	 string).	 Any	 deeper
objects	or	arrays	still	remain	as	references.

What	 if	we	want	 a	deep	 copy.	 In	 other	words,	 each	 point
will,	 in	addition	 to	having	a	unique	memory	 location	 for	 its
primitive	 values,	 will	 also	 have	 a	 reference	 to	 a	 different
Color	object.

import	{Color,Point}	from	'ch2/drawing1';

let	red:Color=new	Color(255,0,0);
let	red2:Color=new	Color(255,0,0);
let	point:Point=new	Point(0,0,red);
let	point2:Point=new	Point(point.x,point.y,red2);
point.x=100;
console.log(point);
console.log(point2);

This	is	probably	what	we	wanted.	This	is	called	a	deep	copy.
While	 there	 are	 some	 ways	 to	 do	 this	 automatically	 in
Typescript,	 they	 do	 not	 work	 in	 all	 cases,	 and	 can	 be
problematic.	We	can	do	this	manually	as	in	this	example,	but
we	will	look	at	better	ways	later.

Summary
Understanding	references	and	instances	is	critical	in	nearly
all	 programming	 languages.	 In	 typescript,	 every	 variable
whose	type	is	not	a	primitive	type	(string,	boolean,	number)
stores	a	reference	to	the	object.	From	our	examples:

point2=point;	//makes	a	copy	of	the	reference	to	the	one
and	only	object

A	shallow	copy	of	the	object	only	copies	the	top	level
primitive	types,	but	does	not	duplicate	any	contained
objects,	rather	it	copies	the	reference	to	the	same	object.

A	deep	copy	of	the	object	makes	copies	of	all	of	the
objects,	nested	objects	and	primitive	types.	Gives	you	a
true	clone	of	the	object	that	is	independent	of	the
original.	Later,	we	will	learn	how	to	clone	the	object,	but
for	now,	we	have	to	create	an	independent	object	with
the	same	values.

3.5)	This	keyword
Data	Classes	 allow	us	 to	 combine	data	 into	 a	grouping	or
class	and	use	that	grouping	as	a	data	type	in	our	programs.

Overview
There	is	a	special	keyword	this	that	can	be	used	from	inside
the	 constructor	 (or	 any	 method	 inside	 the	 class)	 that	 will
allow	us	access	to	the	member	variables	of	the	object.

Abstracting	the	constructor
Consider	our	color	class

class	Color{
			constructor(public	red:number,	public	
green:number,public	blue:number){	}
}

{:	.no-run}

What	if	instead	of	passing	in	values	for	red,	green,	and	blue,
we	 wanted	 to	 pass	 in	 a	 string	 (either	 “red”,”green”,	 or
“blue”)	to	initialize	our	color	to	one	of	these	three	colors.	We
can	go	back	to	our	original	syntax	and	define	the	members

explicitly,	and	change	our	constructor	to	take	a	string	that	is
not	 marked	 with	 the	 public	 or	 private	 keywords	 since	 we
only	need	it	to	initialize	the	members.

class	Color{
				public	red:number=0;
				public	green:number=0;
				public	blue:number=0;
				constructor(colorStr:string){	
								//what	goes	here
				}
}

{:	.no-run}

The	 idea	 is	 that	we	can	use	the	string	to	determine	how	to
set	the	members.	We	can	use	the	this	keyword	to	access	the
member	variables	of	the	current	instance.

class	Color{
				public	red:number=0;
				public	green:number=0;
				public	blue:number=0;
				constructor(colorStr:string){	
								if	(colorStr==="red"){
												this.red=255;
								}	else	if	(colorStr==="green"){
												this.green=255;
								}	else	if	(colorStr==="blue"){
												this.blue=255;
								}
				}
}
console.log(new	Color("red"));
console.log(new	Color("green"));
console.log(new	Color("blue"));

Here	we	can	 initialize	our	members	 indirectly	by	using	 the
value	of	the	parameter	colorStr.	The	this	keyword	allows	us
access	to	our	own	members	from	within	the	instance.	If	 the
string	is	not	recognized	(i.e.	not	red,	green,	or	blue)	then	the
default	 values	 of	 (0,0,0)	 remain	which	 is	 our	 intention.	We
would	want	to	make	a	comment	on	our	constructor	that	this
is	the	behavior	to	help	users	of	our	class	to	know	how	to	use
it.

Summary

Typescript	 allows	 the	 use	 of	 the	 this	 keyword	 in	 order	 to
access	 the	 members	 of	 the	 current	 instance	 of	 the	 class.
From	 within	 the	 class,	 using	 the	 this	 keyword	 allows	 us
access	 to	 all	 of	 the	 member	 properties	 (public	 or	 private)
within	the	class	instance.

Chapter	Summary
Now	we	have	the	ability	to	create	complex	data	types	of	our
own	using	the	class	keyword.	These	data	types	can	contain
any	other	type	of	object	including	another	class,	a	primitive
type,	or	an	array.	There	is	no	limitation	on	what	the	array	or
embedded	 class	 contain	 (other	 class	 objects,	 arrays	 of
primitives,	 arrays	 of	 other	 class	 objects,	 etc.)	 We	 have	 a
special	 method	 in	 our	 objects	 called	 a	 constructor.	 The
constructor	can	be	used	to	initialize	our	object,	or	by	using
the	 public	 and	 private	 keywords,	 it	 can	 define	members	 of
our	object.	Parameters	without	 these	keywords	behave	 just
like	 parameters	 to	 any	 other	 function,	 but	 with	 these
keywords,	 that	 parameter	 also	 becomes	 a	 member	 of	 the
object.	 We	 can	 access	 the	 members	 of	 our	 class	 instance
using	the	this	keyword.

4)	Classes

4.1)	Class	Methods
Classes	 allow	 us	 to	 combine	 data	 and	 methods	 into	 a
grouping	or	class	and	use	that	grouping	as	a	data	type	in	our
programs.

In	addition	 to	properties	and	constructors	which	we	saw	 in
our	 discussion	 of	 Data	 Classes,	 generalized	 classes	 in
typescript	 can	 also	 contain	 functions	 (called	methods)	 that
can	access	both	public	and	private	members	of	the	class.

A	 class	 with	 methods	 can	 be	 viewed	 as	 a	 self-contained
entity	which	encapsulates	some	concept,	allowing	us	to	use
the	 class	 without	 knowing	 anything	 about	 its	 internal
structure	or	implementation.

Encapsulation	 is	 a	 key	 concept	 of	 this	 course.	 The
idea	 of	 creating	 reusable,	 self	 contained	 types	 which
contain	 both	 data,	 and	 functions	 ot	 operate	 on	 that
data	is	central	to	Object-Oriented	Programming

Adding	functionality	to	a	class
Let’s	 consider	 our	 drawing	 example	 from	 the	 previous
chapter

class	Color{
				constructor(public	red:number,	public	
green:number,public	blue:number){	}
}
class	Point{
				constructor(public	x:number,public	y:number,public	
color:Color){}
}
class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}
}
class	Rectangle{
				constructor(public	corner1:Point,public	
corner2:Point,public	color:Color){}
}

{:	.no-run}

Specifically,	 if	we	look	at	our	Line	class	which	contains	two
points	with	x	and	y	coordinates,	we	might	want	an	easy	way
to	get	a	line’s	length.	We	can	expand	our	definition	of	a	line
to	 contain	 a	 method	 to	 accomplish	 this.	 The	 getLength()

method	can	be	added	inside	the	class	definition.

class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}

				getLength():number{
								let	x=this.start.x-this.end.x;
								let	y=this.start.y-this.end.y;
								let	len:number=Math.sqrt(x*x+y*y);
								return	len;
				}
}

{:	.no-run}

Note	 that	 we	 don’t	 need	 to	 know	 how	 the	 line	 is
represented	to	use	 this	method.	 If	we	have	a	 line	and
want	it’s	length,	we	simply	call	the	getLength	method.
This	 is	 important	 because	 in	 the	 future	 we	 might
change	 the	 internal	 representation	 of	 a	 line,	 but	 this
method	would	 still	 work	 if	 we	 rewrote	 it.	 The	 calling
program	would	not	need	to	change.

Let’s	try	it:

import	{Color,Point}	from	'ch4/drawing1';

class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}
				public	getLength():number{
								let	x=this.start.x-this.end.x;
								let	y=this.start.y-this.end.y;
								let	len:number=Math.sqrt(x*x+y*y);
								return	len;
				}
}
let	myLine:Line=new	Line(new	Point(0,0,new	
Color(0,0,0)),new	Point(100,100,new	Color(0,0,0)),new	
Color(255,0,0));
let	lineLen:number=myLine.getLength();
console.log(lineLen);

We	 can	 add	 as	 many	 methods	 as	 we	 want	 to	 a	 class.	 The
methods	allow	us	to	manipulate	the	data	within	the	class	or
do	 calculations	 using	 the	 data	 within	 the	 class	 without
knowing	 how	 the	 data	 within	 the	 class	 is	 actually
represented.
The	 method	 itself	 must	 obviously	 know,	 but	 external	 code
that	uses	the	class	does	not	need	to	know	anything	about	the
internal	structure.
Later	 we	 will	 use	 the	 private	 keyword	 to	 hide	 that
information	from	users	of	the	class.
Our	 class	 will	 have	 a	 public	 interface	 which	 may	 be
separate	from	its	private	internal	representation.

Default	Parameters
It	is	possible	to	provide	default	values	for	the	parameters	in
the	 function	 signature.	 We	 can	 use	 this	 to	 provide	 default
values	for	our	color	class.	Now	we	can	create	a	color	object
with	these	default	values.	In	the	example	below,	we	create	a
color	with	a	specific	color,	and	one	using	the	defaults	(0,0,0).

class	Color{
				constructor(public	red:number=0,	public	
green:number=0,public	blue:number=0){	}
}
let	specificColor:Color=new	Color(255,128,44);
let	defaultColor:Color=new	Color();
console.log(specificColor);
console.log(defaultColor);

Another	example
Let’s	 try	 to	add	a	 getArea() 	method	 to	our	 rectangle	class.
This	should	be	straight	forward	since	we	have	the	corners.

class	Rectangle{
				constructor(public	
corner1:Point,corner2:Point,color:Color){}

				getArea():number{
								//we	want	to	multiply	width	*	height,	but	we	
already	have	a	way	to	get	the	width	and	the	height
								//using	our	line	class	from	before.		
								//Our	width	is	(this.corner1.x,this.corner1,y)	to	
(this.corner2.x,this.corner1.y)
								//Our	height	is	(this.corner1.x,this.corner1.y)	to	
(this	corner1.x,this.corner2.y)
								//make	lines	for	the	top	and	left	of	the	rectangle,	
and	get	there	lengths,	and	multiply	them	together.
				}
}

{:	.no-run}

The	area	is	the	length	of	the	line	from	(corner1.x,corner1.y)
to	 (corner2.x,corner1.y)	 times	 the	 length	 of	 th	 eline	 from
(corner1.x,corner1.y)	to	(corner1.x,corner2.y)

import	{Color,Point}	from	'ch4/drawing1';

class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}
				getLength():number{
								let	x=this.start.x-this.end.x;
								let	y=this.start.y-this.end.y;
								let	len:number=Math.sqrt(x*x+y*y);
								return	len;
				}
}
class	Rectangle{
				constructor(public	corner1:Point,public	
corner2:Point,public	color:Color){}

				getArea():number{
								let	corner3:Point=new	
Point(this.corner2.x,this.corner1.y,new	Color());
								let	corner4:Point=new	
Point(this.corner1.x,this.corner2.y,new	Color());
								let	horizLine:Line=new	
Line(this.corner1,corner3,new	Color());
								let	vertLine:Line=new	Line(this.corner1,corner4,new	
Color());
								let	
area:number=horizLine.getLength()*vertLine.getLength();
								return	area;
				}
}
let	rect:Rectangle=new	Rectangle(new	Point(0,0,new	
Color()),new	Point(100,100,new	Color()),new	Color());
console.log(rect.getArea());

Exercises
Fill	 in	 the	 method	 getDiagonals() ,	 getPerimeter() ,	 and
getDiagonalLength() 	methods	as	specified	in	the	comments.

import	{Color,Point}	from	'ch4/drawing1';

class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}
				getLength():number{
								let	x=this.start.x-this.end.x;
								let	y=this.start.y-this.end.y;
								let	len:number=Math.sqrt(x*x+y*y);
								return	len;
				}
}
class	Rectangle{
				constructor(public	corner1:Point,public	
corner2:Point,public	color:Color){}

				getArea():number{
								let	corner3:Point=new	
Point(this.corner2.x,this.corner1.y,new	Color());
								let	corner4:Point=new	
Point(this.corner1.x,this.corner2.y,new	Color());
								let	horizLine:Line=new	
Line(this.corner1,corner3,new	Color());
								let	vertLine:Line=new	Line(this.corner1,corner4,new	
Color());
								let	
area:number=horizLine.getLength()*vertLine.getLength();
								return	area;

				}
				/**
									*	Return	an	array	of	line	objects	which	represent	
the	two	diagonals	of	the	rectangle.
									*	@param	none
									*	@returns	An	array	of	2	points	representing	the	
diagonals.		The	first	point	in	the	array	should	be	top
									*	left	to	bottom	right.		The	second	point	should	
be	top	right	to	bottom	left.
									*	@sideEffects	None
				*/
				getDiagonals():Line[]{
				}
				/**
									*	Return	the	length	of	the	diagonal	of	the	
rectangle.
									*	@param	none
									*	@returns	The	length	of	the	diagonal	of	the	
rectangle.
									*	@sideEffects	None
				*/
				getPerimeter():	number	{
				}
				/**
							*	Return	the	length	of	the	diagonal	of	the	
rectangle.
							*	@param	none
							*	@returns	The	length	of	the	diagonal	of	the	
rectangle.
							*	@sideEffects	None
				*/
				getDiagonalLength():number{
				}
}
let	rect:Rectangle=new	Rectangle(new	Point(0,0,new	

Color()),new	Point(100,100,new	Color()),new	Color());
console.log(rect.getDiagonals());
console.log(rect.getPerimeter());
console.log(rect.getDiagonalLength())

	Show	Solution

One	 thing	 to	notice	 is	 that	we	had	 to	 compute	 the	missing
corners	 in	 every	 function.	 It	 would	 make	 more	 sense	 to
compute	them	when	the	object	is	created	and	store	them	as
member	 variables.	 We	 can	 do	 this	 without	 changing	 the
public	interface	of	the	class	and	simplify	all	of	our	member
methods.	We	will	do	this	in	the	next	section.

So	now	we	can	add	methods	to	our	classes	to	create	robust
objects	 that	encapsulate	not	 just	some	heterogeneous	data,
but	also	methods	that	can	work	on	that	data.
We	 can	 use	 the	 classes	 to	 create	 instances	 with	 the	 new
operator	which	store	their	own	data,	and	have	methods	that
work	on	the	data	inside	the	instance.

let	color1=new	Color(0,0,0);
let	color2=new	Color(255,255,255);
color1.red=255;

{:	.no-run}

NOTE:	color2	is	unchanged.	It	 is	a	distinct	instance	of
our	class	Color.

Summary
Classes	in	typescript	can	contain	only	data	(Data	Classes)	or
they	 can	 contain	 a	 combination	 of	 data	 and	 methods	 that
operate	on	that	data.	The	methods	can	access	the	properties
of	the	class	instance	by	using	the	this	keyword.	In	this	way,
we	can	create	classes	that	not	only	combine	data	that	goes
together,	 but	 also	 encapsulate	 it	with	 the	methods	 that	 act
upon	that	data.

4.2)	Data	Hiding
Classes	 allow	 us	 to	 combine	 data	 and	 methods	 into	 a
grouping	or	class	and	use	that	grouping	as	a	data	type	in	our
programs.

Data	Hiding
Consider	our	rectangle	class	again:

class	Rectangle{
				constructor(public	corner1:Point,	public	
corner2:Point,public	color:Color){	}
}

{:	.no-run}

We	made	all	of	the	member	variables	(properties)	public	for
simplicity,	 but	 now	 we	 cannot	 change	 the	 internal
representation.
Making	 members	 private	 hides	 them	 from	 everything
outside	the	class	making	them	inaccessible.
We	can	rewrite	this	class	making	our	point	members	private.

class	Rectangle{
				constructor(private	corner1:Point,	private	
corner2:Point,public	color:Color){}
}

{:	.no-run}

Nothing	 changes	 except	 we	 cannot	 access	 corner1	 and
corner2	outside	our	class,	but	our	methods	(diagonal,	area,
perimeter)	 that	 we	 wrote	 in	 the	 exercise	 in	 the	 previous
chapter	are	fine	because	they	are	inside	the	class.
We	can	still	create	a	rectangle	and	call	our	methods	on	it,	we
just	can’t	get	the	corners	any	more.	If	we	really	need	them,
we	can	write	methods	to	get	them	or	change	them.

But	 Why?	 Imagine	 we	 wrote	 this	 for	 a	 client,	 and
suddenly	after	we	have	written	a	100,000	line	drawing
program	 they	 want	 us	 to	 add	 the	 ability	 to	 rotate	 a
rectangle.
Our	implementation	DOES	NOT	ALLOW	THIS!!!.
Also,	 many	 of	 the	 methods	 we	 wrote	 required	 us	 to
compute	 the	 missing	 corners.	 If	 we	 stored	 all	 4
corners,	 then	we	 could	 do	 all	 of	 these	 things	without
breaking	the	100,000	lines	of	external	code.

We	 can	make	 the	 change	 easily	without	 breaking	 anything
outside	 our	 code.	 We	 will	 renumber	 the	 corners	 from	 the
upper	 left	 clockwise	 for	 simplicity.	 Note	 that	 we	 do	 not
change	 the	 signature	 of	 the	 constructor,	 only	 the	 hidden
data.

class	Rectangle{
				private	corner2:Point;
				private	corner4:Point;
				constructor(private	corner1:Point,	private	
corner3:Point,public	color:Color){	
								this.corner2=new	Point(corner3.x,corner1.y,color);
								this.corner4=new	Point(corner1.x,corner3.y,color);
				}
}

{:	.no-run}

Nothing	is	changed	in	how	you	create	instances	of	this
class,	 but	 now	 we	 have	 all	 4	 points	 stored.	 Now	 we
could	add	a	rotate	method	if	we	choose.

Because	 we	 relabled	 our	 corners,	 and	 added	 the	 new
corners,	we	 should	 rewrite	all	 of	 the	 internal	methods	 (but
we	won’t	change	the	signature	of	the	method).

Here	is	a	complete	working	example:

import	{Color,Point}	from	'ch5/drawing1';

class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}
				getLength():number{
								let	x=this.start.x-this.end.x;
								let	y=this.start.y-this.end.y;
								let	len:number=Math.sqrt(x*x+y*y);
								return	len;
				}
}
class	Rectangle{
				private	corner2:Point;
				private	corner4:Point;
				constructor(private	corner1:Point,	private	
corner3:Point,public	color:Color){	
								this.corner2=new	Point(corner3.x,corner1.y,color);
								this.corner4=new	Point(corner1.x,corner3.y,color);
				}
				getArea():number{
								let	horizLine:Line=new	
Line(this.corner1,this.corner2,new	Color());
								let	vertLine:Line=new	
Line(this.corner1,this.corner4,new	Color());
								let	
area:number=horizLine.getLength()*vertLine.getLength();
								return	area;
				}
				/**
									*	Return	an	array	of	line	objects	which	represent	
the	two	diagonals	of	the	rectangle.
									*	@param	none
									*	@returns	An	array	of	2	points	representing	the	

diagonals.		The	first	point	in	the	array	should	be	top
									*	left	to	bottom	right.		The	second	point	should	
be	top	right	to	bottom	left.
									*	@sideEffects	None
				*/
				getDiagonals():Line[]{
								let	result=[
												new	Line(this.corner1,this.corner3,new	
Color()),
												new	Line(this.corner4,this.corner2,new	
Color()),
];
								return	result;
				}
				/**
									*	Return	the	length	of	the	diagonal	of	the	
rectangle.
									*	@param	none
									*	@returns	The	length	of	the	diagonal	of	the	
rectangle.
									*	@sideEffects	None
				*/
				getPerimeter():	number	{
								let	horizLine:Line=new	
Line(this.corner1,this.corner2,new	Color());
								let	vertLine:Line=new	
Line(this.corner3,this.corner4,new	Color());
								return	
horizLine.getLength()*2+vertLine.getLength()*2;
				}
				/**
							*	Return	the	length	of	the	diagonal	of	the	
rectangle.
							*	@param	none
							*	@returns	The	length	of	the	diagonal	of	the	

rectangle.
							*	@sideEffects	None
				*/
				getDiagonalLength():number{
								let	diags:Line[]=this.getDiagonals();
								return	diags[0].getLength();
				}
}
let	rect:Rectangle=new	Rectangle(new	Point(0,0,new	
Color()),new	Point(100,100,new	Color()),new	Color());
console.log(rect.getDiagonals());
console.log(rect.getPerimeter());
console.log(rect.getDiagonalLength())

Summary
Data	 hiding	 is	 an	 important	 tool	 for	 object	 oriented
programming.	 It	 allows	 us,	 as	 the	 programmer,	 to	 decide
what	functionality,	methods,	and	data	we	expose	to	the	users
of	our	class	without	worrying	about	 things	we	have	hidden
inside.
If	 we	 provide	 a	 public	 interface	 to	 our	 class	 that	 is
consistent,	then	we	should	try	not	to	change	it,	but	anything
that	is	private	can	be	changed	so	long	as	we	make	sure	that
the	 public	 interface	 still	 works	 as	 expected	 without
breaking	anything	that	uses	our	class.

4.3)	Object	Cloning
Classes	 allow	 us	 to	 combine	 data	 and	 methods	 into	 a
grouping	or	class	and	use	that	grouping	as	a	data	type	in	our
programs.

Types	of	copies
Recall	from	the	previous	chapter	the	discussion	of	copying.

point2=point; 	//makes	a	copy	of	the	reference	to	the	one
and	only	object

A	shallow	copy	of	the	object	only	copies	the	top	level
primitive	types,	but	does	not	duplicate	any	contained
objects,	rather	it	copies	the	reference	to	the	same	object.
For	arrays,	we	can	use	the	spread	operator	(…)	to	do	this.

A	deep	copy	of	the	object	makes	copies	of	all	of	the
objects,	nested	objects	and	primitive	types.	Gives	you	a
true	clone	of	the	object	that	is	independent	of	the
original.	Later,	we	will	learn	how	to	clone	the	object,	but
for	now,	we	have	to	create	an	independent	object	with
the	same	values.

A	deep	copy	of	the	object	makes	copies	of	all	of	the	objects,
nested	objects	and	primitive	types.	Gives	you	a	true	clone	of
the	object	that	is	independent	of	the	original.	Later,	we	will

learn	how	to	clone	the	object,	but	for	now,	we	have	to	create
an	independent	object	with	the	same	values.
How	do	we	do	this	in	a	structured	way?

We	teach	each	class	how	to	clone	itself,	and	then	use
those	methods	if	we	have	a	class	that	contains	another
class.

We	will	work	from	the	bottom	up	of	our	hierarchy	of
classes.	The	simplest	of	which	is	our	color	class.

Consider	 the	 Color	 class	 we	 have	 been	 working	 with.
Cloning	 that	 is	 eash	 as	 a	 shallow	 copy	 is	 sufficient.	 The
classes	data	items	are	all	primitive	types	(numbers).

class	Color{
				constructor(public	red:number=0,	public	
green:number=0,public	blue:number=0){	}
				clone():Color{
								return	new	Color(this.red,this.green,this.blue);
				}
}
let	red=new	Color(255,0,0);
let	blue=red.clone();
blue.red=0;
blue.blue=255;
console.log(red,blue);

We	can	create	a	new	color	object	from	an	existing	one
by	calling	the	existing	one’s	clone	method.

Our	point	method	is	more	difficult	in	that	it	contains	a	Color
object.	Here	 a	deep	copy	 is	 required	 to	 not	 only	 copy	 the
point	 object	 into	 a	 new	 instance,	 but	 also	 create	 a	 new
instance	of	the	color	object.	Luckily	the	color	object	already
has	a	clone	method.

import	{Color}	from	'ch5/drawing2';

class	Point{
				constructor(public	x:number,public	y:number,public	
color:Color){}
				clone():	Point{
								return	new	Point(this.x,this.y,this.color.clone());
				}
}
let	p=new	Point(5,5,new	Color());
let	q=p.clone();
q.color=new	Color(255,255,255);
q.x=0;
console.log(p,q);

Note,	if	we	passed	the	color,	we	would	get	a	reference
to	 the	 same	 color	 object,	 but	 by	 calling	 its	 clone
method,	we	get	a	new	one	(since	we	wrote	it	that	way).

Likewise,	 we	 can	 add	 a	 clone	method	 to	 our	 Line	 class	 as
well.	Again,	 since	 this	 class	 contains	 references	 to	 objects,
we	must	deep	copy	the	line	class.	Luckily	each	of	the	object
types	 (color	 and	 line)	 already	 has	 a	 clone	 method	 we	 can
use.

import	{Color}	from	'ch5/drawing3';

class	Line{
				constructor(public	start:Point,public	end:Point,public	
color:Color){}
				clone():Line{
								return	new	
Line(this.start.clone(),this.end.clone(),this.color.clone()
);
				}
}
let	line=new	Line(
				new	Point(0,0,new	Color()),
				new	Point(100,100,new	Color()),
				new	Color()
);
let	line2=line.clone();
line2.color.red=255;
line2.start.x=5;
console.log(line,line2);

We	 can	 easily	 do	 the	 same	 for	 our	 Rectangle	 and	 Polygon
classes.	For	the	rectangle	class

import	{Color,Point}	from	'ch5/drawing3';

class	Rectangle{
			private	corner2:Point;
			private	corner4:Point;
			constructor(private	corner1:Point,	private	
corner3:Point,public	color:Color){	
							this.corner2=new	Point(corner3.x,corner1.y,color);
							this.corner4=new	Point(corner1.x,corner3.y,color);
			}
			clone():Rectangle{
						return	new	
Rectangle(this.corner1.clone(),this.corner3.clone(),this.co
lor.clone());
			}
}
let	rect=new	Rectangle(
				new	Point(0,0,new	Color()),
				new	Point(100,100,new	Color()),
				new	Color()
);
let	rect2=rect.clone();
rect2.color.red=255;
console.log(rect,rect2);

For	 the	 polygon	 class,	 things	 are	 a	 little	 trickier.	 The	 class
contains	an	array	of	references	to	Point.	If	we	use	the	spread
operator	 to	create	a	new	array,	we	will	 only	get	a	shallow
copy	and	the	individual	points	will	reference	the	same	Point
objects	 as	 the	 original	 Polygon.	 We	 will	 need	 to	 iterate
through	the	array	and	clone	the	objects	indivisually	to	create
a	new	deep	copy	of	the	array	to	use	in	our	cloned	object.

import	{Color,Point}	from	'ch5/drawing3';

class	Polygon{
				constructor(public	points:Point[],public	color:Color){}
				clone():Polygon{
								let	newPoints:Point[]=[];															
//initialize	a	new	empty	array.
								for	(let	point	of	this.points){
												newPoints.push(point.clone());						//don’t	
push	the	point,	push	a	clone	of	it.
								}
								//	so	newPoints	is	a	new	array	containing	clones	of	
all	the	points	in	this	polygon.		We	can	pass	it	directly	
since	it	is	completely	new.
								return	new	Polygon(newPoints,this.color.clone());
				}
}
let	pts=[
				new	Point(0,0,new	Color()),
				new	Point(100,0,new	Color()),
				new	Point(100,100,new	Color()),
				new	Point(100,0,new	Color())
];
let	poly=new	Polygon(pts,new	Color());
let	poly2=poly.clone();
poly2.color.red=255;
console.log(poly,poly2);

Understanding	memory	layouts

Let’s	 consider	 how	 using	 clone	 affects	 the	 layout	 of	 our
objects	 in	memory.	 This	 can	 be	 a	 good	 way	 to	 understand
what	is	going	on	in	your	program.

let	point1:	Point	=	new	Point(0,	0,	new	Color(255,0,0));
let	point2:	Point	=	new	Point(100,	100,	new	
Color(255,0,0));
let	line:	Line	=	new	Line(point1,	point2,	new	
Color(255,0,0));
let	line2:	Line	=	line.clone();

{:	.no-run}

Notice	point1	and	point2	are	still	the	same	references	as	we
have	in	line.	We	can	clone	the	points	making	them	distinct.

let	point1:	Point	=	new	Point(0,	0,	new	Color(255,0,0));
let	point2:	Point	=	new	Point(100,	100,	new	
Color(255,0,0));
let	line:	Line	=	new	Line(point1.clone(),	point2.clone(),	
new	Color(255,0,0));

{:	.no-run}

By	using	 our	 clone	methods	 in	 all	 of	 our	 classes,	 this
code	now	has	each	element	of	each	class	as	a	distinct
instance.

Summary
The	 simplest	 way	 to	 ensure	 deep	 cloning	 is	 to	 teach	 each
class	how	to	deep	copy	itself.	If	we	do	this	then	classes	that
contain	the	class	in	question	can	just	call	its	clone	method	to

deep	copy	it.

Chapter	Summary
In	 addition	 to	 storing	 data	 (Data	Classes),	 classes	 can	 also
contain	 methods.	 These	 methods	 can	 operate	 on	 the	 data
within	 the	 class	 without	 regard	 to	 its	 visibility.	 We	 can
change	 the	 visibility	 of	 a	member	property	 or	method	with
the	public/private	keywords.	Anything	marked	as	public	 is
accessible	outside	of	the	class	instance.	Anything	marked	as
private	 can	 only	 be	 accessed	 within	 a	 method	 inside	 that
class.

5)	Composition	and
Inheritance

5.1)	Composition
Using	composition,	we	can	build	complex	objects	 in	order
to	define	new	types	that	has	a	contains	a	relationship	with
some	existing	type.

Composition	in	Typescript
So	 far	 we	 have	 examined	 classes	 which	 contain	 both	 data
and	methods.	We	can	combine	classes	by	 including	another
class	as	a	member	of	our	class

Consider	the	Point	class	which	contains	an	instance	of
the	color	class.

Consider	the	Rect	class	which	contains	instances	of	our
color	class	and	2	point	classes

This	method	of	combining	classes	to	produce	other	classes	is
known	 as	 composition	 because	 we	 are	 adding	 classes	 as
members	of	our	new	class.
This	is	a	powerful	tool	for	building	classes,	as	it	allows	us	to
compartmentalize	 concepts	 (like	 color,	 or	 point)	 then	 use
them	to	build	more	complex	concepts.

Understanding	the	Relationship

The	 important	 thing	 here	 is	 the	 relationship	 with
composition:

In	general,	if	a	concept	that	a	class	(Class1)	represents	is
a	part	of	another	class	(Class2),	then	we	add	Class1	to
Class2	as	a	member	variable	(property).

We	could	also	say	that	if	Class2	contains	Class1,

Note	 that	 the	 instance	 of	 Color	 is	 inside	 Point.	 This
makes	sense	since	the	point	has	a	Color.

Recognizing	 the	 relationship	 between	 concepts	 that	 are	 to
be	 represented	 as	 Classes	 is	 critical	 to	 Object	 Oriented
Programming.	Here	are	some	simple	examples:

A	Car	has	a	tire.	If	we	have	a	tire	class,	we	can	represent
a	car	by	composition.	We	would	add	4	(or	5)	tire
instances	to	our	car	class.

A	course	has	a	final	exam.	If	we	had	an	exam	class,	we
can	represent	a	course	by	composition.	We	would	add
an	instance	of	our	exam	class	to	course.

A	classroom	has	desks.	If	we	had	a	desk	class,	we	can
represnet	a	classroom	by	composition.	We	would	add	1
or	more	instances	of	our	desk	class	to	our	classroom.

A	fruit	basket	has	fruit.	The	following	example	shows
how	we	use	composition	to	represent	a	basket	of	fruit
by	adding	an	array	of	fruit	to	our	basket	class.

class	Fruit{
		constructor(public	type:string,public	color:string,public	
price:number){};
}
class	FruitBasket{
		constructor(private	fruits:Fruit[],private	
basketCost:number){}
		public	getPrice(){
				let	sum:number=0;
				for	(let	fruit	of	this.fruits){
						sum+=fruit.price;
				}
				return	sum+this.basketCost;
		}
}
let	basket:FruitBasket=new	FruitBasket(
		[new	Fruit("apple","red",.50),new	
Fruit("orange","orange",.92),new	
Fruit("lemmon","yellow",1.50)],4.00
);
//expect	6.92
console.log(basket.getPrice());

Composition	 allows	us	 to	 reuse	 our	 fruit	 class	 for	 various
types	 of	 fruit	 and	 combine	 them	 into	 a	 basket.	 Our	 basket
can	then	expose	public	methods	(like	getPrice()	which	have
access	 to	 the	member	 fruits)	 to	sum	up	 the	price	of	all	 the
fruits,	 add	 it	 to	 the	 price	 of	 the	 basket,	 and	 return	 a	 total
price	which	is	dependent	on	the	fruits	inside.

Summary
Composition	gives	the	programmer	the	ability	to	represent
a	has	a	 or	 a	contains	 relationship.	The	 relationship	 is	 the
key	 to	understanding	when	 to	use	composition	over	other
methods.

5.2)	Inheritance
Using	 Inheritance,	 we	 can	 build	 complex	 hierarchies	 of
objects	in	order	to	define	new	types	that	are	a	type	of	some
existing	type.

Understanding	the	relationship
In	 the	 previous	 section	 we	 discussed	 composition	 which
allowed	 us	 to	 represent	 a	 contains	 or	 has	 a	 relationship
between	two	classes.	Recall	 that	a	course	has	a	 final	and	a
fruit	basked	contains	 fruit.	While	useful	 in	many	situations,
we	 often	 wnat	 to	 represent	 a	 type	 of	 relationship.	 In
typescript,	 the	 extend 	 keyword	 allows	 us	 to	 represent	 a
class	in	terms	of	another	class	that	it	is	a	type	of.

Consider	the	following:

An	apple	is	a	type	of	fruit.

A	car	is	a	type	of	vehicle.

A	triangle	and	a	rectangle	are	types	of	polygons	(more	on
this	later)

In	a	University	computer	system,	a	student	and	a	faculty
member	are	both	types	of	Users.

Why	inheritance
We	 can	 inherit	 the	 properties	 and	 methods	 of	 an	 existing
class	and	extend	that	class	by	either	adding	new	members,
or	replacing	the	functionality	of	existing	members	to	suit	the
new	object’s	needs.

Suppose	I	have	a	class	Users	that	represents	a	system	user
on	a	University’s	central	IT	system.

class	Users	{
		constructor(private	name:	string,private	age:	number)	{}
		public	getName():	string	{
				return	this.name;
		}
		public	getAge():	number	{
				return	this.age;
		}
}

{:	.no-run}

This	 class	 has	 private	 properties	 name	 and	 age,	 and	 two
functions	to	retrieve	the	values	in	these	properties.	In	other
words,	users	of	the	class	CANNOT	change	the	name	or	age,
but	they	can	retrieve	them.

Now	 suppose	 I	 want	 to	 create	 two	 new	 classes	 called
Students	and	Faculty.	I	want	them	to	have	all	of	the	abilities
of	 a	 User,	 but	 they	 also	 need	 some	 additional	 capabilities

based	on	the	type.

It	 is	extremely	 important	 to	note	 that	a	Student,	does
not	 contain	 a	User,	 the	 Student	 is	 a	User.	We	 cannot
say	 this	 about	 points	 and	 colors.	 A	 point	 is	 a	 color?
That	makes	no	sense.
A	student	is	a	user,	that	makes	sense.

So	 how	 do	 we	 deal	 with	 this	 type	 of	 relationship	 between
classes?

We	 can	 extend	 an	 existing	 class	 when	 the	 relationship
between	the	objects	is	an	is	a	relationship.	Our	new	classes
act	like	the	old	class	unless	we	add	some	functionality	to	it.

class	Student	extends	Users	{
}
class	Faculty	extends	Users	{
}

{:	.no-run}

We	can	now	define	objects	of	type	Student	and	Teacher,	and
instantiate	them	with	new	and	they	work	just	like	our	Users
class.

class	Users	{
		constructor(private	name:	string,private	age:	number)	{}
		public	getName():	string	{
				return	this.name;
		}
		public	getAge():	number	{
				return	this.age;
		}
}
class	Student	extends	Users	{
}
class	Faculty	extends	Users	{
}
let	collegeStudent	=	new	Student("John",	20);
let	teacher	=	new	Faculty("Jane",	30);
console.log(collegeStudent.getName(),	
collegeStudent.getAge());
console.log(teacher.getName(),	teacher.getAge());

While	all	Users	share	some	things	in	common,there	are	a	lot
of	things	that	are	unique	to	being	a	student	or	Faculty.

Students	have	a	gradTerm	and	a	gpa.	They	are	still	users,
but	they	are	a	type	of	user.

Faculty	has	a	department,	an	office,	and	a	list	of	classes
they	teach.	Again,	they	are	still	a	type	of	user.

class	Student	extends	Users	{
		private	gradTerm:	string='';
		private	gpa:number=0;
}
class	Teacher	extends	Users	{
		private	department:string='';
		private	classes:	string[]=[];
		private	office:	string='';
}

{:	.no-run}

In	more	 formal	 terms,	 the	Student	 class	 inherits	 from	 the
Users	class.
We	say	that	Student	is	a	subclass	of	Users	and	that	Users	is
a	superclass	of	Student	(and	Faculty).
Implementing	this	sort	of	relationship	(type	of,	 is	a,	etc.)	 in
this	manner	is	referred	to	as	inheritance.
We	 inherit	 everything	 about	 the	 superclass,	 but	 still	 are	 a
distinct	 type	 with	 our	 own	 properties	 and	 methods	 in
addition	to	those	in	the	subclass.

The	superclass	 is	often	referred	to	as	the	base	class
of	the	relationship.

If	we	want	to	create	a	constructor	to	initialize	our	object,	we
must	remember	that	it	is	a	User	so	its	constructor	must	also
be	responsible	for	the	name	and	age	fields	from	the	parent
or	superclass,	otherwise,	how	would	they	ever	get	set?

It	 is	 easy	 to	 initialize	 gradTerm	 and	 gpa,	 but	 how	 do	 we
initialize	the	members	from	the	superclass?

class	Student	extends	Users	{
				private	gradTerm:	string	=	"";
				private	gpa:	number	=	0;
				constructor(name:	string,	age:	number,	gradTerm:	
string,	gpa:	number)	{
						//SOMEHOW	WE	HAVE	TO	INITIALIZE	THE	SUPERCLASS	(or	
PARENT)
						this.gradTerm	=	gradTerm;
						this.gpa	=	gpa;
		}
}

{:	.no-run}

We	 can	 call	 the	 superclass’	 constructor	 within	 our
constructor	by	calling	the	super()	method.	This	will	take	the
same	arguments	as	the	constructor	of	the	superclass.
Here	 those	 arguments	 are	 name	 and	 age.	 This	 calls	 the
constructor	 in	 Users	 which	 takes	 care	 of	 its	 part	 of	 the
initialization.

class	Student	extends	Users	{
				private	gradTerm:	string	=	"";
				private	gpa:	number	=	0;
				constructor(name:	string,	age:	number,	gradTerm:	
string,	gpa:	number)	{
						//calling	super	as	the	first	line	of	our	constructor	
initializes	the	superclass	by	calling	its	constructor.
						super(name,age);
						//After	it	is	initialized,	we	can	then	initialize	our	
member	variables	as	usual
						this.gradTerm	=	gradTerm;
						this.gpa	=	gpa;
		}
}

{:	.no-run}

Here	is	a	completed	example:

class	Users	{
		constructor(private	name:	string,private	age:	number)	{}
		public	getName():	string	{
				return	this.name;
		}
		public	getAge():	number	{
				return	this.age;
		}
}
class	Student	extends	Users	{
		private	gradTerm:	string	=	"";
		private	gpa:	number	=	0;
		constructor(name:	string,age:	number,	gradTerm:	string,	

gpa:	number)	{
				super(name,	age);
				this.gradTerm	=	gradTerm;
				this.gpa	=	gpa;
		}
		public	getGradTerm():	string	{
				return	this.gradTerm;
		}
		public	getGPA():	number{
				return	this.gpa;
		}
}
class	Faculty	extends	Users	{
		private	department:string='';
		private	classes:	string[]=[];
		private	office:	string='';
		constructor(name:	string,age:	number,	
department:string,classes:string[],office:string)	{
				super(name,	age);
				this.department=department;
				this.classes=classes;
				this.office=office;
		}		
		getDepartment():string{
				return	this.department;
		}
		getClasses():string[]{
				return	this.classes;
		}
		getOffice():string{
				return	this.office;
		}
}
let	jan:Student=new	Student("Jan",19,"25S",3.95);
let	lisa:Faculty=new	Faculty("Lisa",42,"Computer	Science",

["CISC181","CISC210"],"317	Morris	Hall");
console.log(jan.getName()+"	has	a	GPA	of	"+jan.getGPA())
console.log(lisa.getName()+"	is	in	the	
"+lisa.getDepartment()+"	department.")

Both	 Lisa	 and	 Jan	 can	 call	 getNme	 because	 it	 is
inherited	 from	 Users	 in	 both	 Student	 and	 Faculty
classes,	but	only	Jan	can	call	getGPA,	because	it	is	only
defined	in	the	child	or	subclass	Student.	Likewise,	Lisa
can	call	getDepartment,	but	Jan	can’t	because	it	is	only
defined	in	the	subclass	Faculty.

Another	 way	 to	 think	 about	 this	 is	 that	 Teachers	 and
Students	share	some	things	in	common:

They	both	have	names

They	both	have	ages	(although	Teacher.age	>
Student.age)

They	also	have	some	differences:

Students	have	a	GPA	and	a	gradTerm

Faculty	have	a	department,	an	office,	a	list	of	classes,	and
don’t	show	up	on	photographic	film.

We	 encapsulate	 their	 commonality	 in	 the	Users	 class,	 then
extend	 Users	 to	 make	 new	 classes	 that	 express	 the
differences.

Summary
Inheritance	allows	the	programmer	to	represent	an	is	a	or
type	of	relationship.	Using	inheritence	through	the	 extends
keyword,	we	can	express	both	the	similarities	and	differents
between	objects	in	these	types	of	relationships.	We	can	call
the	constructor	 (we	must	actually)	 of	 our	 superclass	 in	 the
constructor	of	our	subclass	by	calling	the	 super 	method	and
passing	it	the	same	list	of	parameters	we	would	pass	to	the
superclasses	constructor.

5.3)	Putting	it	all	Together
Using	 Inheritance,	 we	 can	 build	 complex	 hierarchies	 of
objects	in	order	to	define	new	types	that	are	a	type	of	some
existing	type.

Termiology	review
Composition:

Add	a	class	or	array	of	class	as	a	property	to	your	class.

Represents	a	has	a	relationship

Inheritance:

Extend	an	existing	class	by	adding	functionality,	but
keeping	the	functionality	of	the	original	class.

Represents	a	is	a	relationship

The	class	that	we	are	extending	is	called	the	superclass	or
sometimes	the	base	class	or	parent	class
The	 class	 that	 we	 are	 creating	 by	 extending	 is	 called	 a
subclass	or	child	class.

Back	to	drawing

Is	there	something	most	of	our	objects	have	in	common?

All	of	 the	drawing	objects	 (Point,	Line,	Rectangle,	Polygon)
have	 a	 Color	 component.	 If	 we	 create	 a	 class	 with	 just	 a
color	 component,	 we	 could	 share	 that	 definition	 in	 all	 our
drawing	classes	by	extending	it.

What	should	we	call	our	new	class?

We	 want	 something	 descriptive	 that	 supports	 the	 is	 a
relationship	 with	 all	 the	 other	 classes.	 For	 this	 example,	 I
will	choose	to	create	a	class	Drawable.

class	Drawable	{
				public	color:	Color;
				constructor(color:	Color)	{
								this.color	=	color.clone();
				}
				public	clone():	Drawable	{
								return	new	Drawable(this.color);
				}
}

{:	.no-run}
Here	 is	 a	 simple	 drawable	 class.	 It	 contains	 a	 color
(composition),	a	clone	method,	and	automatically	makes	a
deep	copy	of	the	color	object	in	the	constructor.
It	just	holds	our	color	object,	so	we	will	extend	this	to	make
all	of	our	other	drawables.

export	class	Point	extends	Drawable	{
				constructor(
								public	x:	number	=	0,
								public	y:	number	=	0,
								color:	Color	=	new	Color(),
)	{
								super(color);
				}
				clone():	Point	{
								return	new	Point(this.x,	this.y,this.color);
				}
}

{:	.no-run}

Our	point	class	 inherits	color	 from	the	Drawable	class.	Our
Point	 constructor	 calls	 the	 constructor	 for	 our	 Drawable
class	and	passes	it	the	color	so	it	can	do	its	initialization	(all
drawables	 have	 a	 color).	 It	 does	 this	 by	 passing	 color	 to
super

Notice,	that	the	public	 interface	is	unchanged,	but	we
don’t	have	to	worry	about	the	color,	the	drawable	does.

class	Line	extends	Drawable{
				public	start:	Point;
				public	end:	Point;
				constructor(start:	Point,end:	Point,color:	Color=new	
Color())	{
								super(color);	//Must	be	first	thing	in	constructor	
always
								this.start	=	start.clone();
								this.end	=	end.clone();
				}
				clone():	Line	{
								return	new	Line(this.start,	this.end,	this.color);
				}
}

{:	.no-run}

Our	 Line	 class	 can	 also	 inherit	 from	 our	 Drawable	 class.
Again	it	calls	super	to	initialize	the	Drawable	portion	of	the
object.
Note	also	that	the	constructor	clones	the	corner	points.
Reminder:

Drawable	is	the	superclass,	base	class,	parent	class

Line	is	the	subclass,	child	class

class	Polygon	extends	Drawable{
				public	points:	Point[],
				constructor(points:	Point[],	color:	Color)	{
								super(color);
								let	newPoints=[];
								for	(let	point	of	points)	{
												newPoints.push(point.clone());
								}
								this.points=newPoints;
				}
				clone():	Polygon	{
								return	new	Polygon(this.points,	this.color);
				}
}

{:	.no-run}

Our	polygon	class	can	also	inherit	from	our	Drawable	class.
Again	it	calls	super	to	initialize	the	Drawable	portion	of	the
object.
Note	also	that	the	constructor	clones	the	array	of	points	by
cloning	 each	 point	 and	 pushing	 them	 onto	 a	 new	 array
before	setting	the	member	variable	points.

Deeper	hierarchies
We	can	create	deeper	hierarchies	 to	express	 these	 types	of
relations.

Everyone	is	a	User

A	Student	is	a	type	of	User

An	undergrad	is	a	type	of	Student

A	Freshman	is	a	type	of	Undergrad
Etc.

The	 point	 of	 inheritance	 is	 to	 capture	 these	 types	 of
relationships.	 Be	 careful	 that	 the	 relationship	 you	 are
capturing	 is	 a	 type	 of	 relationship	 as	 many	 inexperienced
programmers	 overuse	 inheritance,	 where	 the	 relationship
really	calls	for	composition.

A	point	is	not	a	type	of	color,	so	we	don’t	derive	point
from	color.

An	undergraduate	is	a	type	of	student,	so	we	derive
Undergraudate	from	Student

Summary
Inheritance	 allows	 us	 to	 capture	 an	 is	 a	 relationship
between	 two	 classes.	 When	 a	 class	 inherits	 from	 a
superclass,	it	gets	access	to	everything	in	the	superclass	as
well	 as	 anything	 defined	 within	 the	 subclass.	We	 can	 use
this	 to	 build	 complex	 deep	 hierarchies	 where	 we	 can
represent	complex	objects	by	extending	existing	classes.

Chapter	Summary
In	 this	 chapter	we	have	 introduced	 two	ways	 to	build	up	a
class	from	other	classes.

If	the	two	classes	have	an	has	a	or	contains
relationship,	then	we	use	composition	by	adding
member	variables	to	our	class	of	the	other	classes	type.	A
drawable	contains	a	color	by	this	method.

If	the	two	classes	have	a	type	of	or	is	a	relationship,
then	we	use	inheritance	by	extending	one	class	and
inheriting	all	of	its	members	and	functionality.	A	line	is	a
drawable	by	this	method.

6)	Overrides	and
Polymorphism

6.1)	Member	Access
We	can	control	access	to	the	members	of	a	superclass	with
the	private,	public,	and	protected	keywords.

Understanding	Inheritance
In	 the	 previous	 chapter	 we	 introduced	 the	 notion	 of
inheritance	 to	 support	 relationships	 between	 concepts	 that
represent	an	is	a	or	type	of	relationship.
This	 is	 different	 from	 composition	 which	 supports
relationships	 between	 concepts	 that	 represent	 a	 has	 a	 or
contains	a	relationship.

Note:	 Each	 subclass	 has	 a	 type	 of	 relationshiplower
with	its	superclass.

Assume	 that	 the	Musical	 Instrument	 has	 a	 name ,	 a	 musical

key 	 (ie.	 C#,	 Bb),	 and	 a	 year	 invented 	 field	 as	 well	 as	 a
method	 getName() 	which	returns	the	name	of	the	instrument.

Then	all	the	other	classes	ALSO	have	those	fields.	We	don’t
need	 to	 recreate	 them	 in	 our	 child	 since	 we	 inherit	 them
from	the	parent	class.	This	is	one	of	the	primary	benefits	of

inheritance.

Note:	 Cellos	 have	 a	 name,	 key	 and	 year	 field	 and	 a
getName()	method	automatically	due	to	inheritance.

If	you	can	map	out	the	relationships	between	concepts,	then
by	using	a	 combination	of	 inheritance	and	composition,	we
can	build	complex	hierarchies	out	of	simple	objects.

Controlling	Access
When	 we	 create	 a	 class,	 we	 have	 options	 about	 how	 that
class	can	be	used	and	inherited.
Fields	and	methods	can	be:

private:	Only	accessible	within	the	class

protected:	Only	accessible	within	the	class	or	any	defined
subclasses

public:	Accessible	from	anywhere	(inside	or	outside	the
class	hierarchy).

By	controlling	access	to	properties	and	methods,	we	expose
to	 the	outside	world	a	minimal	set	of	public	properties	and
methods	 are	 exposed.	 Public	 items	 are	 more	 difficult	 to
change	because	others	might	be	using	 them.	Protected	are

slightly	 easier	 and	 only	 break	 classes	 inherited	 from	 us.
Changes	 to	 private	 methods	 effect	 nothing	 outside	 of	 the
class	itself.

Let’s	briefly	go	back	to	our	drawing	example.
Note	 that	 our	 points	 are	 private.	 This	 is	 good	 in	 case	 we
want	to	change	how	we	store	polygons	without	breaking	the
rest	of	 the	code	base,	but	 it	doesn’t	allow	us	to	build	other
objects	from	polygon,	like	triangles,	rectangles,	etc.

export	class	Polygon	extends	Drawable{
		private	points:	Point[],
				constructor(points:	Point[],	color:	Color)	{
								super(color);
								let	newPoints=[];
								for	(let	point	of	points)	{
												newPoints.push(point.clone());
								}
								this.points=newPoints;
				}
				clone():	Polygon	{
								return	new	Polygon(this.points,	this.color);
				}
}

{:	.no-run}

We	 can	 still	 prevent	 outsiders	 from	 accessing	 our	 array	 of
points,	 while	 giving	 access	 to	 the	 array	 to	 any	 subclass	 of
our	class	by	using	the	protected	keyword.

export	class	Polygon	extends	Drawable{
		protected	points:	Point[],
		constructor(points:	Point[],	color:	Color)	{
				super(color);
				let	newPoints=[];
				for	(let	point	of	points)	{
						newPoints.push(point.clone());
				}
				this.points=newPoints;
		}
		clone():	Polygon	{
				return	new	Polygon(this.points,	this.color);
		}
}

{:	.no-run}

The	 points	 array	 is	 still	 not	 available	 to	 the	 outside	world,
and	changing	 it	would	only	affect	 the	subclasses	we	create
from	Polygon	(like	rectangle	and	triangle),	but	users	of	our
classes	will	 not	 see	a	 change.	They	 still	will	 not	be	able	 to
access	the	points	array	just	like	before.

Now	we	can	simplify	the	rectangle	class	by	recognizing	that
a	rectangle	is	a	type	of	polygon.	Because	all	of	the	members
are	private	(i.e.	not	being	used	by	anyone	outside	our	class),
we	 can	 change	 those	 members	 without	 fear	 of	 breaking
other	code.

class	Rectangle	extends	Polygon{
		constructor(corner1:	Point,	corner3:	Point,	color:	Color)	
{
				super([
						corner1,
						new	Point(corner3.getX(),	corner1.getY()),
						corner3,
						new	Point(corner1.getX(),	corner3.getY()
],	color);
		}
		clone():	Rectangle	{
				return	new	Rectangle(this.corner1,	this.corner3,	
this.color);
		}
}

{:	.no-run}

Notice	 that	 now	 we	 are	 deriving	 from	 Polygon	 instead	 of
Drawable.	 Because	 a	 polygon	 can	 already	 represent	 a
rectangle,	we	don’t	need	any	other	properties	(we	can	delete
the	corners).

We	call	the	superclasses	constrctor	with	the	array	of	points
for	 the	 particular	 4	 sided	 polygon	 that	 this	 rectangle
represents.
We	would	need	to	rewrite	the	area,	perimeter	and	diagonals
methods	 to	 use	 our	 new	 implementation,	 but	 users	 of	 our
class	will	see	no	change	in	how	they	use	it.

Because	 we	 are	 passing	 the	 points	 to	 the	 Polygon
constructor,	 and	 that	 constructor	 clones	 the	points	when	 it
builds	 the	member	variable	points,	we	do	not	need	to	do	 it
here.	It	would	work	if	we	did,	but	we	would	have	short	lived,
unnecessary	copies	of	the	points	in	memory.
Knowing	 how	 the	 parent	 works	 informs	 how	 we	 write	 the
subclass.

If	 no	 access	 specifier	 (public,private,protected)	 is
given,	the	compiler	will	default	to	public.

Important	points	on	experience
Some	important	points	on	inheritance.

You	do	not	need	to	reimplement	the	properties	of	the
parent	class	as	you	are	inheriting	them.

super(…)	calls	the	constructor	of	the	parent	class	and
takes	whatever	arguments	the	parent	constructor	takes.

If	a	member	is	public	or	protected,	you	can	access	it	in
the	subclass,	if	it	is	private,	you	cannot,	but	it	is	still
there.

When	we	subclass,	we	get	all	of	the	properties	of	our	parent
class	and	can	access	them	if	they	are	public	or	protected.
For	 methods	 (i.e	 member	 functions),	 the	 same	 holds	 true
based	on	if	they	are	public,	protected,	or	private.	We	get	the
functions	in	the	superclass.

Summary
We	 can	 control	 access	 to	 the	 members	 of	 a	 class	 (both
properties	and	methods)	by	using	the	public,	private,	and
protected	keywords.	Public	members	are	accessible	to	all,
private	members	 are	 only	 accessible	within	 the	 class,	 and
protected	members	 are	 accessible	 in	 the	 class	 and	 in	 any
subclass	of	the	class.

6.2)	Overrides
We	 can	 override	 a	 method	 in	 our	 subclass	 by	 creating	 a
method	 with	 the	 same	 signature	 as	 a	 method	 in	 our
superclass.

Altering	functionality
In	the	previous	sections,	we	learned	that	when	we	inherit	or
subclass	 a	 class,	we	get	 all	 of	 its	methods	 (i.e.	 functions).
Sometimes	this	is	not	what	we	want.

Let’s	consider	that	we	want	to	add	a	getArea	method	to	all
of	our	drawable	classes.	This	doesn’t	 really	make	sense	 for
Drawable	and	Line,	but	does	for	the	rest.	The	calculation	is,
however,	very	different.
If	we	add	a	default	getArea	method	to	our	Drawable	with	the
same	 signature	 as	 it	 has	 elsewhere	 in	 the	 class	 hierarchy,
then	objects	that	do	not	implement	getArea,	will	inherit	the
default	behavior,	and	objects	that	define	the	method	will	get
the	new	behavior

class	Drawable	{
		public	color:	Color;
		...
		...
		...
		getArea():	number	{
				console.log("This	object	does	not	have	an	area");
				return	0;
		}
}

{:	.no-run}

If	a	subclass	implements	getArea	(like	rectangle,	circle,	and
triangle),	then	the	version	in	the	subclass	is	used,	otherwise,
the	 version	 in	 the	 base	 class	 is	 used.	 This	 is	 called
overriding	a	class	method.

Consider	a	new	class	for	the	drawing	example.	A	circle:

class	Circle	extends	Drawable	{
		private	center:	Point;
		private	radius:	number;
		...
		...
		...
		getArea():	number	{
				return	Math.PI	*	this.radius	*	this.radius;
		}
}

{:	.no-run}

Now	if	the	object	is	a	circle,	we	get	its	area.	If	the	object	is	a
line,	we	get	the	message,	and	a	value	of	0.	If	we	add	getArea
to	 the	 drawables	 that	make	 sense,	 then	 only	 those	 classes
that	do	not	override	getArea	will	use	the	implementation	in
the	superclass.
If	 it	 is	 implemented	 in	 the	 subclass,	 then	 the	 subclass
version	will	be	used.
Overriding	 of	 methods	 is	 a	 powerful	 tool	 to	 express
different	behaviors	in	subclasses,	while	allowing	us	to	have	a
default	implementation.
We	 can	 even	 call	 the	 superclass	 implementation	 from	 our
overridden	method.

We	can	build	in	some	default	behaviors	to	our	superclasses,
and	 override	 those	 behaviors	 in	 our	 subclasses	 if	 it	makes
sense,	 or	 just	 use	 the	 superclass	 implementation	 if	 it	 is
sufficient.

An	Example
Here	 is	 an	example	of	 an	overridden	method	 that	 calls	 the
parent’s	 version	 of	 the	 method,	 but	 then	 adds	 some
functionality	of	its	own.

Notice	the	code	super.getDescription()
While	 we	 user	 super()	 to	 call	 the	 constructor	 of	 the
superclass,	we	can	use	super.methodname()	to	call	any
method	on	the	superclass	even	if	it	is	overridden.

class	Fruit{
		constructor(private	name:	string){}
		public	getDescription():	string{
				return	`This	is	a	fruit	called	${this.name}`;
		}
}

class	Orange	extends	Fruit{
		constructor(protected	subType:string){
				super("orange");
		}
		public	getDescription():	string{
				return	super.getDescription()	+	"	of	type	"	+	
this.subType;
		}
}
class	Apple	extends	Fruit{
		constructor(protected	subType:string){
				super("apple");
		}
		public	getDescription():	string{
				return	super.getDescription()	+	"	of	type	"	+	
this.subType;
		}
}

let	apples:Apple[]=	[new	Apple("red"),	new	Apple("green")];
let	oranges:Orange[]	=	[new	Orange("blood"),	new	
Orange("navel")];
for	(let	apple	of	apples){
		console.log(apple.getDescription());
}
for	(let	orange	of	oranges){
		console.log(orange.getDescription());
}

With	 our	 current	 knowledge	we	 need	 to	make	 an	 array	 of
Orange	objects,	and	an	array	of	Apple	objects,	 then	 iterate
through	 them	 independently.	 In	 the	 next	 section	 we	 will
learn	a	better	way	to	accomplish	this.

Summary
When	we	 subclass	 a	 class,	we	get	 all	 of	 its	members,	 both
properties	 and	 methods.	 If	 the	 members	 are	 public	 or
protected,	 we	 can	 access	 them	 within	 the	 subclass.	 If	 we
wish	to	change	or	augment	the	behavior	of	a	given	method
of	the	child	class,	we	can	override	that	method	and	replace
it	with	our	own	functionality.	Within	the	overridden	method,
we	can	call	the	superclass’	method	if	we	choose.

6.3)	Polymorphism
Polymorphism	 in	 Object	 Oriented	 Programming	 is	 the
provision	of	a	single	interface	to	entities	of	different	types.

Motivation	for	Polymorphism
From	the	 fruit	example	 in	 the	previous	section,	 it	would	be
preferable	 if	we	could	 just	 store	an	array	of	 fruits	 and	call
getDescription	on	each	fruit.	It	would	be	great	if	the	correct
getDescription	got	called	based	on	the	type	of	fruit	that	was
created,	not	the	type	of	the	array.

It	turns	out	that	this	WORKS!	For	apples	it	will	call	the	apple
version	 of	 getDescription,	 and	 for	 oranges	 it	 will	 call	 the
orange	version.

class	Fruit{
		constructor(private	name:	string){}
		public	getDescription():	string{
				return	`This	is	a	fruit	called	${this.name}`;
		}
}

class	Orange	extends	Fruit{
		constructor(protected	subType:string){
				super("orange");
		}
		public	getDescription():	string{
				return	super.getDescription()	+	"	of	type	"	+	
this.subType;
		}
}
class	Apple	extends	Fruit{
		constructor(protected	subType:string){
				super("apple");
		}
		public	getDescription():	string{
				return	super.getDescription()	+	"	of	type	"	+	
this.subType;
		}
}
let	fruits:Fruit[]	=	[new	Apple("red"),	new	Apple("green"),		
		new	Orange("blood"),	new	Orange("navel")];
for	(let	fruit	of	fruits){
		console.log(fruit.getDescription());
}

If	 either	class	did	not	 implement	getDescription(),	 then	 the
superclass	 version	would	be	 called.	This	 powerful	 behavior
is	 a	 type	 of	 polymorphism	 and	 allows	 us	 to	 create	 very
powerful	 class	 hierarchies,	 that	 are	 simple	 to	 access	 and
use.

In	 other	words,	 in	 our	 fruit	 example,	we	 provided	 a	 public
interface	 for	 all	 fruits	 that	 included	 the	 method
getDescription().	Regardless	 of	 the	 type	 of	 fruit,	 the	 public
interface	 does	 not	 change,	 and	 the	 language	 is	 able	 to
dispatch	the	method	call	to	the	appropriate	subclass	for	us
automatically.
This	 type	 of	 polymorphism	 is	 subclass	 or	 subtype
polymorphism.	 There	 are	 other	 types	 of	 polymorphism
including	 ad-hoc	 polymorphism	 and	 parametric
polymorphism.	 We	 will	 examine	 parametric	 polymorphism
later.

So	 with	 creative	 use	 of	 subclass	 polymorphism,	 we	 can
provide	a	generic	 interface	 to	all	 objects	 that	 share	a	base
class,	with	a	default	behavior.

Back	to	the	drawing	board
Returning	 to	 the	 drawing	 example,	 if	 we	 added	 a	 draw
method	 to	 the	 drawable	 class	 that	 does	 nothing,	 then
implemented	 the	 draw	 method	 in	 each	 of	 our	 subclasses,
then	 we	 could	 store	 a	 drawing	 as	 an	 array	 of	 drawables,

iterate	through	the	array,	and	call	the	draw	method.	This	is
acceptable	 because	 Drawable	 has	 a	 draw	method,	 but	 the
correct	draw	method	(depending	on	the	type	of	object)	will
be	called	for	us	automatically.	This	is	polymorphism

class	Drawable	{
		public	color:	Color;
		constructor(color:	Color)	{
				this.color	=	color.clone();
		}
		clone():	Drawable	{
				return	new	Drawable(this.color);
		}
		draw(page:Page):	void	{
				//Do	nothing,	I	don’t	know	how
		}
}

class	Line	extends	Drawable	{
			...
		draw(page:	Page):	void	{
				page.drawLine(
						this.start.getX(),
						this.start.getY(),
						this.end.getX(),
						this.end.getY(),
						this.color.toString(),
);
		}
}
let	obj:Drawable=new	Line(new	Point(0,0),new	Point(1,1),
		new	Color());
obj.draw(this.drawingSurface);

{:	.no-run}

Note:	You	can	 install	 the	drawing	 library	using	 in	this
example	with	the	page	object	using	npm.
npm	i	--save	@boots-edu/web-draw

It	is	safe	to	call	draw	on	a	Drawable	object,	it	just	doesn’t	do
anything.
If	we	call	it	on	a	Line	object,	it	draws	the	line.
If	we	call	 it	on	a	Line	object	 stored	 in	a	Drawable	variable
(which	is	allowed	since	it	is	a	Drawable),	it	calls	the	method
in	the	Line	class.

Summary
Polymprhism	 in	 general	 denotes	 the	 idea	 of	 several
different	 types	of	 objects	having	 the	 same	public	 interface.
Specifically,	 in	 this	 section	 we	 examined	 subtype	 or
subclass	 polymorphism	 which	 is	 when	 we	 override
methods	in	a	superclass	allowing	us	to	call	the	methods	on	a
variable	 of	 the	 superclass	 type	which	 contains	 an	object	 of
the	 subclass	 type.	 This	 causes	 the	 system	 to	dispatch	 the
call	to	the	correct	subclass.

6.4)	Abstract	Classes
An	abstract	class	is	a	class	that	cannot	be	instantiated,	but
which	can	be	used	as	a	superclass	for	other	classes.

Abstract	Classes
With	 the	 version	 of	 our	 drawing	 program	 from	 the	 last
section,	 what	 happens	 when	 a	 developer	 using	 our	 class
creates	 an	 actual	 Drawable	 object.	 We	 built	 it	 to	 act	 as	 a
superclass	 for	 all	 of	 the	 drawable	 objects,	 but	 it	makes	 no
sense	to	create	one	on	its	own.	It	isn’t	really	drawable	since
the	 draw	 function	 doesn’t	 do	 anything.	 It	 provides	 no
functionality,	 and	 serves	 no	 purpose	 other	 than	 to	 act	 as	 a
superclass	 to	 our	 other	 elements,	 hold	 their	 color,	 and
dispatch	their	draw	requests.

let	weird:Drawable=new	Drawable(new	Color());
weird.draw(this.drawingSurface);

{:	.no-run}

It	would	be	nice	not	to	be	able	to	prevent	a	user	of	our	class
from	accidentally	creating	and	using	one	of	these.

Let’s	begin	with	our	definition	of	 a	Drawable	 from	 the	 last
section:

class	Drawable	{
		public	color:	Color;
		constructor(color:	Color)	{
				this.color	=	color.clone();
		}
		clone():	Drawable	{
				return	new	Drawable(this.color);
		}
		draw(page:Page):	void	{
		}
}

{:	.no-run}

We	can	modify	our	drawable	class	 to	prevent	 it	 from	being
instantiated	directly	by	tagging	it	as	abstract	in	the	method
signature.
This	breaks	our	clone	method,	how	do	we	fix	it.

abstract	class	Drawable	{
		public	color:	Color;
		constructor(color:	Color)	{
				this.color	=	color.clone();
		}
		clone():	Drawable	{
				return	new	Drawable(this.color);		//	Since	it	is	
abstract,	we	are	not	allowed	to	create	one	anymore.
		}
		draw(page:Page):	void	{
		}
}

{:	.no-run}

We	simply	remove	the	body	of	clone	and	mark	it	as	abstract

abstract	class	Drawable	{
		public	color:	Color;
		constructor(color:	Color)	{
				this.color	=	color.clone();
		}
		abstract	clone():	Drawable;		//Just	the	signature	
followed	by	a	semicolon	is	sufficent	to	create	the	
interface	without	an	implementation.
		draw(page:Page):	void	{
}

{:	.no-run}

Since	we	can’t	make	one	of	 these	directly,	we	cannot	clone
it.	We	rely	on	the	implementation	in	the	super	class.
If	 you	 derive	 from	 an	 abstract	 class,	 then	 all	 abstract
members	MUST	be	 implemented	 in	 the	 subclass	 since	now
there	is	no	default	implementation.

We	can	take	a	this	a	step	further	and	remove	the	do	nothing
method	draw	by	making	it	an	abstract	method	as	well.

abstract	class	Drawable	{
		public	color:	Color;
		constructor(color:	Color)	{
				this.color	=	color.clone();
		}
		abstract	clone():	Drawable;		
		abstract	draw(page:Page):	void;
}

{:	.no-run}

Now	any	class	that	derives	from	Drawable	will	not	compile	if
it	does	not	implement	clone	and	draw	itself.
However,	 since	 they	 are	 still	 defined	 in	 the	 superclass,	we
can	still	 call	 it	 on	any	object	derived	 from	Drawable	and	 it
will	 still	 dispatch	 to	 the	 correct	 subclass	 method.	 If	 we
removed	 it	altogether,	 it	would	not	dispatch	correctly	when
called.

Summary
A	base	class	that	wants	to	express	a	public	interface	for	its
subclasses,	but	does	not	provide	an	implementation	for	that
interface	 is	 called	 an	 abstract	 class.	 Any	 methods	 within
the	 class	 that	 do	 not	 have	 implementations	 are	 called
abstract	 methods.	 We	 denote	 both	 a	 class	 or	 a	 method
being	abstract	by	using	the	 abstract 	keyword.

6.5)	Polymorphism	Notes
Polymorphism	 in	 Object	 Oriented	 Programming	 is	 the
provision	of	a	single	interface	to	entities	of	different	types.

Things	to	know
It	is	ok	to	store	an	object	of	a	subclassed	type	in	a	variable
typed	to	the	superclass.

let	dObj:Drawable=new	Line(new	Point(1,2),new	
Point(3,4),new	Color(1,2,3));

{:	.no-run}

Calling	methods	on	that	variable	will	call	the	method	in	Line
if	 it	 is	 implemented,	 and	 fall	 back	 to	 calling	 the	method	 in
Drawable	if	it	is	not.

dObj.draw(this.drawingSurface);

{:	.no-run}

If	a	class	has	no	intended	use	on	its	own,	but	only	is	used	as
a	parent	class,	then	we	can	make	it	abstract,	meaning	that	it
cannot	be	created	with	new.

abstract	class	Drawable	{

{:	.no-run}

If	we	 have	methods	 that	make	 no	 sense	 in	 the	 superclass,
and	 must	 be	 implemented	 in	 the	 subclass,	 then	 we	 can
declare	them	as	abstract	as	well	to	support	dispatch.

abstract	draw(page:	any):	void;

{:	.no-run}

An	Example
Remember	our	Users/Student/Faculty	classes.
Here	is	a	simplified	and	updated	version	for	us	to	look	at.
The	 base	 class	 Users	 implements	 name,	 age,	 and	 two
methods	to	access	them.
It	is	abstract	and	cannot	be	created.
In	 addition,	 suppose	we	want	 to	 build	 a	 database	 of	 users,
the	Database	class	implements	that.

abstract	class	Users{
		constructor(protected	name:	string,	protected	age:	
number){}
		getName():string{return	this.name};
		getAge():number{return	this.age};

		abstract	getDetails():string;
}
class	Students	extends	Users{
		constructor(name:	string,	age:	number,	private	grade:	
number){
				super(name,	age);
		}
		getDetails():string{
				return	`N:	${this.name},	A:	${this.age},	G:	
${this.grade}`;
		}
}
class	Faculty	extends	Users{
		constructor(name:	string,	age:	number,	private	
department:	string){
				super(name,	age);
		}
		getDetails():string{
				return	`N	${this.name},	A:	${this.age},	D:	
${this.department}`;
		}
}
class	Database{
		private	users:	Users[]	=	[];
		addUser(user:	Users):void{
				this.users.push(user);
		}
		getUsers():Users[]{
				return	this.users;
		}
		getUser(name:string):Users[]{
				let	result:Users[]	=	[];
				for(let	user	of	this.users){
						if(user.getName()	===	name){
								result.push(user);

						}
				}
				return	result;
		}
}
let	db:Database=new	Database();
db.addUser(new	Students("Lisa",19,4.0));
db.addUser(new	Faculty("Linda",45,"Computer	Science"));
let	users=db.getUsers();
for(let	user	of	users){
		console.log(user.getDetails());
}

Even	 though	 the	 database	 contains	 a	 mix	 of	 Students	 and
Teachers,	we	return	an	array	of	Users	 to	make	 the	method
more	generic.
We	can	 loop	through	the	returned	values	getting	details	on
each	object	regardless	of	type.

In	 general,	 you	 should	 return	 the	 most	 generic	 (i.e.
superclass)	 type	 possible	 to	 make	 your	 method	 generic.
There	are	ways	to	 look	and	see	what	class	we	actually	are,
but	 if	 we	 are	 calling	 overridden	 methods	 that	 exist	 in	 the
superclass,	we	don’t	need	to	worry	about	that.	We	just	use	it.

Summary
You	now	know	most	of	the	generic	things	about	OOP.	In
other	words,	while	the	syntax	may	differ	slightly,	all	of

the	concepts	hold	true	in	most	OO	languages	like	Java,
C++,	C#,	etc.

We	can	construct	complex	classes	by	building	them	out	of
parts	that	they	contain	using	composition.

We	can	construct	complex	classes	by	extending	other
classes	and	adding	functionality	to	create	more	and	more
specific	classes	that	take	advantage	of	the	features	that
already	exist	in	the	superclass.

We	can	use	the	idea	of	polymorphism	to	reference	objects
through	their	superclass,	and	have	the	correct
implementation	in	the	subclass	execute	for	us	through
polymorphism.

We	can	use	the	idea	of	polymorphism	to	reference
objects	through	their	superclass,	and	have	the	correct
implementation	in	the	subclass	execute	for	us.
We	can	prevent	the	creation	of	a	class	being	used
exclusively	as	a	superclass	by	marking	it	as	abstract.
We	can	force	subclasses	to	create	overridden	methods	for
our	superclass	by	declaring	methods	as	abstract.	This
does	not	prevent	dispatch,	but	does	remove	the	default
behavior,	making	all	subclasses	implement	the	method
themselves.

And	 with	 all	 of	 this,	 we	 have	 an	 elegant	 way	 to	 design
programs	that	leverages	the	ability	to	share	code,	and	view
a	problem	in	terms	of	objects.

7)	Exceptions	and	Code
Quality

7.1)	Exceptions
An	 Exception	 is	 the	 process	 of	 responding	 to	 the
occurrence	 of	 exceptions	 –	 anomalous	 or	 exceptional
conditions	at	run	time.

Exceptions	in	Typescript
What	is	an	exception?

An	exception	is	a	way	to	break	the	“normal”	flow	of	a
program	in	the	event	that	an	abnormal	condition	exists.

This	can	be	due	to	invalid	inputs	or	data	provided	at
runtime	or	any	other	condition	that	is	not	the	“common
case”	behavior	of	a	method	or	function.

It	is	a	way	to	respond	to	validation	within	your	code	in	a
structured	way.

Some	exception	may	be	generated	by	libraries	that	you
may	use.

You	can	raise	and	throw	exceptions	within	your	own	code

When	an	exception	is	thrown,	the	program	will	terminate
unless	the	exception	is	caught.

let	x:number=50;
throw	new	Error("This	is	an	error");
console.log(x);

Note	 that	 the	 line	 console.log(x)	 will	 not	 execute.	 The
current	function	will	exit	immediately	and	if	the	exception	is
not	 “handled”	 by	 a	 calling	 method	 somewhere	 in	 the	 call
stack,	the	program	will	terminate	immediately.
We	will	talk	about	handling	exceptions	in	a	bit,	but	for	now,
we	 want	 to	 be	 able	 to	 generate	 them	 when	 exceptional
conditions	occur.

So	let’s	examine	in	detail	what	the	above	code	does:

Sets	the	variable	x	to	the	value	50.

Immediately	terminates	execution	of	the	current	method
and	begins	to	“bubble	up”	the	exception	through	all	of
the	calling	methods	until	it	is	handled.

If	the	exception	bubbles	past	the	first	function	called,	the
program	terminates	and	prints	an	error	message	to	the
console.

If	 the	 exceptions	 is	 not	 handled,	 the	 program	 exits.	 The
system	prints	out	the	call	stack	in	the	console.

Error:	This	is	an	error
				at	test	(/home/xxx/test.js:4:11)
				at	Object.<anonymous>	(/home/xxx/test.js:7:1)
				at	Module._compile	
(node:internal/modules/cjs/loader:1376:14)
				at	Module._extensions..js	
(node:internal/modules/cjs/loader:1435:10)
				at	Module.load	
(node:internal/modules/cjs/loader:1207:32)
				at	Module._load	
(node:internal/modules/cjs/loader:1023:12)
				at	Function.executeUserEntryPoint	[as	runMain]	
(node:internal/modules/run_main:135:12)
				at	node:internal/main/run_main_module:28:49

Note:	The	call	stack	shows	us	all	the	places	where	we
could	have	caught	the	error	as	well	as	all	the	internal
code	 that	 is	 part	 of	 the	 Typescript	 system.	 In	 this
example,	 the	 first	 2	 lines	 show	where	 we	 could	 have
caught	the	exception.

Using	exceptions
We	can	use	exceptions	 to	 improve	our	 software	design	and
make	 it	 react	 in	 a	 structured	 way	 to	 exceptional
conditions.

Let’s	consider	the	code	for	our	drawing	program	again.

class	Color	{
		constructor(
				private	red:	number	=	0,
				private	green:	number	=	0,
				private	blue:	number	=	0,
)	{}
		clone():	Color	{
				return	new	Color(this.red,	this.green,	this.blue);
		}
		getRed():	number	{
				return	this.red;
		}
		getGreen():	number	{
				return	this.green;
		}
		getBlue():	number	{
				return	this.blue;
		}
}

Valid	 color	 values	 in	 our	 program	 are	 numbers	 between	 0
and	 255.	 What	 happens	 if	 we	 try	 to	 create	 a	 color	 with
different	values?

The	code	will	allow	these	non-sensical	values	to	be	stored
in	red,	green	and	blue.

We	can	use	exceptions	to	prevent	this.

export	class	Color	{
		constructor(
				private	red:	number	=	0,
				private	green:	number	=	0,
				private	blue:	number	=	0,
)	{
				if	(red<0	||	red>255)	throw	new	Error(“Invalid	red	
value”);
				if	(green<0	||	green>255)	throw	new	Error(“Invalid	
green	value”);
				if	(blue<0	||	blue>255)	throw	new	Error(“Invalid	blue	
value”);
		}
		clone():	Color	{
				return	new	Color(this.red,	this.green,	this.blue);
		}
		//Rest	of	code	removed	for	brevity
		.	.	.
		.	.	.
}

We	 can	 check	 the	 values	 in	 the	 constructor,	 and	 throw	 an
exception	if	they	are	invalid.	It	will	be	up	to	the	code	that	is
creating	 the	 color	 object	 to	 “handle”	 the	 exception,
otherwise	the	program	will	exit	with	an	error	like	the	one	we
saw	previously.

Note:	Now	we	can’t	create	a	color	objects	with	invalid
values.	If	we	try,	the	Color	class	will	raise	an	exception
to	 notify	 the	 calling	 code	 that	 something	 bad
happened.

If	the	calling	code	does	not	“handle”	the	exception,	then	the
program	will	terminate	with	an	error	message	(the	one	you
threw)	 and	 the	 call	 stack	 to	 help	 you	 figure	 out	where	 the
exception	occurred	in	the	execution	of	your	program.

const	color:Color=new	Color(400,	400,	400);

Throws	(raises)	an	exception	with	the	message	“Invalid	red
value”.	Again,	 if	 this	 is	not	handled	somewhere	 in	 the	code
that	calls	this,	the	program	will	exit.

Custom	Errors
If	we	want	to	pass	more	information	with	our	Error,	we	can
create	our	own	class	that	extends	error,	and	throw	that.

class	ColorError	extends	Error	{
		constructor(
				message:	string,
				public	red:	number,
				public	green:	number,
				public	blue:	number,
)	{
				super(message);
				this.name	=	"ColorError";
		}
}

Here	 this.name 	 is	 part	 of	 the	 Error	 class	 which	 we	 are
extending	 (inheritance).	 The	 message	 is	 as	 well	 which	 we
are	updating	by	calling	 super(message); 	 then	we	are	adding
properties	red,	green,	and	blue	so	that	they	are	reported	to
the	 calling	 method	 with	 the	 exception.	 This	 can	 be	 very
useful	when	we	get	to	exception	handling.
If	a	block	of	code	 throws	different	kinds	of	exceptions,	 this
can	be	a	good	way	to	notify	the	calling	method	as	to	the	type
of	exception	and	can	help	in	writing	the	handler.

Exceptions	are	useful	during	programming	even	if	we	don’t
handle	them.
If	 you	 throw	 an	 exception	 every	 time	 the	 inputs	 to	 your
method	are	wrong,	or	some	other	kind	of	error	occurs,	and
you	have	good	tests,	you	will	see	those	errors	and	be	able	to
fix	them.

If	we	 accidentally	 try	 to	 create	 an	 invalid	 color	 object,	 the
program	will	 terminate	 and	 tell	 us	why.	 The	 call	 stack	will
tell	us	where	the	method	was	called.

There	 are	 other	 places	 in	 our	 drawing	 code	where	we	 are
allowing	 an	 invalid	 or	 incorrect	 state	 to	 occur	 because	we
are	not	checking.	Again,	we	can	prevent	this	by	throwing	an
exception	when	this	happens.

In	our	polygon	class,	I	can	create	polygons​with	no	points,	1
point,	 or	 2	 points	 which	 ​are	 NOT	 POLYGONS.​We	 can	 also
create	millions	of	polygons,	 ​perhaps	we	can	prevent	that	as
well.
Good	 documentation	 can	 help,	 but	 using	 exceptions	 will
prevent	it.
Can	I	use	exception	handling	to	make	sure	it	is	not	possible
to	create	an	invalid	polygon?

const	MAX_POINTS:number	=	10;
class	Polygon	extends	Drawable	{
		protected	points:	Point[]	=	[];
		constructor(points:	Point[],	color:	Color)	{
				super(color);
				if	(points.length<3	||	points.length>MAX_POINTS)
						throw	new	Error(“Invalid	polygon”);
				for	(let	point	of	points)	{
						this.points.push(point.clone());
				}
		}
		//Rest	of	class	removed	for	brevity
		.	.	.
		.	.	.
}

Now,	 if	 I	 try	 to	 create	 a	 polygon	with	 less	 than	 3	 or	more
than	10	points,	an	exception	is	thrown.	If	not,	then	program
execution	continues	normally.
If	we	don’t	handle	this	exception,	the	program	will	terminate
(letting	 us	 know	 to	 either	 handle	 the	 exception,	 or	 fix	 the
calling	code	to	prevent	it.

Where	 else	 might	 exception	 handling	 help	 us	 find	 issues
with	our	drawing	program?

How	about	a	circle	with	0	or	negative	radius?

class	Circle	extends	Drawable	{
				private	center:	Point;
				private	radius:	number;
				constructor(center:	Point,	radius:	number,	color:	
Color)	{
						super(color);
						if	(radius<=0)	throw	new	Error("Radius	must	be	
greater	than	0");
						this.center	=	center.clone();
						this.radius	=	radius;
				}
				//Rest	of	class	removed	for	brevity
				.	.	.
				.	.	.
}

A	line	where	the	two	points	are	the	same

First	 it	 might	 be	 useful	 to	 add	 a	 method	 to	 compare	 to
points.	 We	 can	 then	 use	 that	 method	 to	 determine	 if	 two
points	have	the	same	value	(not	the	same	object	reference).

class	Point	{
		constructor(
				private	x:	number	=	0,
				private	y:	number	=	0,
)	{
				super(color);
				if	(start.equals(end))
						throw	new	Error("Start	and	end	points	must	be	
different");
				this.start	=	start.clone();
				this.end	=	end.clone();
		}
		equals(other:	Point):	boolean	{
				return	this.x	===	other.x	&&	this.y	===	other.y;
		}
		//Rest	of	class	removed	for	brevity
		.	.	.
		.	.	.
}

Remember	 if	 a	 and	 b	 are	 Point	 objects,	 then	 a===b
asks	 if	 they	are	the	same	object	reference	 in	memory,
but	 a.equals(b)	 checks	 if	 they	 have	 the	 same
coordinates,	whether	or	not	they	are	the	same	physical
object	reference.

We	can	use	the	 equals 	to	validate	our	line	object.	If	the	two
points	have	 the	 same	coordinates,	 regardless	of	 if	 they	are
references	to	the	same	object,	the	constructor	will	throw	an
exception.
Now	 our	 Line	 is	 guaranteed	 to	 have	 start	 and	 end	 points
with	different	coordinates.

Because	 Color 	 throws	 an	 exception	 if	 the	 values	 are
invalid,	we	don’t	 need	 to	 check	 that	 here.	 The	 call	 to
the	 color	 constructor	 will	 throw	 an	 exception	 if	 the
color	 is	 invalid,	 so	 we	 don’t	 need	 to	 worry	 about	 it
here.

We	 could	 do	 something	 similar	 with	 our	 polygon	 class	 to
verify	that	none	of	the	points	are	the	same.	This	would	also
handle	 things	 for	our	 Rectangle 	and	 Triangle 	 classes	 since
they	are	now	derived	from	 Polygon

class	Polygon	extends	Drawable	{
				protected	points:	Point[]	=	[];
				constructor(points:	Point[],	color:	Color)	{
								super(color);
								if	(points.length	<	3	||	points.length	>	
MAX_POINTS)
												throw	new	Error(
																`A	polygon	must	have	at	least	3	points	and	
at	most	${MAX_POINTS}	points`,
);				
								//	Check	for	duplicate	points
								for	(let	i	=	0;	i	<	points.length;	i++)	{
												for	(let	j	=	i	+	1;	j	<	points.length;	j++)	{
																if	(points[i].equals(points[j]))	{
																				throw	new	Error("Duplicate	points	are	
not	allowed	in	a	polygon.");
																}
												}
								}
								
								for	(let	point	of	points)	{
												this.points.push(point.clone());
								}
				}
		//Rest	of	class	removed	for	brevity
		.	.	.
		.	.	.
}				

Note	 the	 Brute	 force	 approach	 to	 searching	 for
duplicates.	For	each	element,	 check	all	 the	 remaining
elements	for	duplicates.	Also	note	that	we	still	need	to
make	 sure	 there	 are	 at	 least	 3	 and	 not	 more	 than
MAX_POINTS	points	 in	 the	polygon.	Now	we	are	also
making	them	unique.

Thought	Question:	Why	does	j	start	at	i+1	and	not	0?

Defensive	Programming
So	 now	 we	 can	 prevent	 our	 code	 from	 being	 exposed	 to
“exceptional”	 or	 invalid	 operation,	 by	 simply	 throwing	 an
exception	when	those	cases	arise.
If	we	write	good	test	cases,	we	will	find	errors	in	our	code,
but	 right	 now,	 our	 program	 will	 just	 exit	 with	 an	 error
message.
Making	sure	that	our	code	will	not	accept	invalid	values	and
thus	 have	 undocumented,	 or	 undefined	 behaviors	 is	 good
defensive	programming.
It	 would	 be	 better	 if	 we	 were	 able	 to	 catch	 the	 exception
somewhere	in	the	call	stack	and	handle	it	elgently	instead	of
just	 having	 our	 program	 crash	 with	 an	 error	message	 just

because	 of	 some	 invalid	 input.	 At	 a	 minimum	 it	 would	 be
nice	to	exit	cleanly	and	report	the	problem	to	the	user	 in	a
more	“user	friendly”	way.

Exception	Handling
We	 can	 use	 the	 try/catch/finally	 approach	 to	 handle	 errors
thrown	by	methods	that	we	call.

try	{
		//do	something	which	might	throw	an	exception
}	catch	(e)	{
		//handle	the	exception	in	some	way
}finally{
		//do	something	after	regardless	of	the	try/catch	result
}

If	we	do	one	or	more	operations	which	might	throw	an	error
within	a	try	block,	if	an	exception	occurs	within	that	code	or
any	 code	 that	 is	 called	 within	 the	 block,	 that	 code	 exits
immediately,	 and	 the	 catch	 block	 is	 called,	 where	 e	 is	 the
Error	 derived	 object	 that	 was	 passed	 to	 throw	 within	 the
code.
This	will	prevent	the	program	from	exiting	and	consume	the
exception	and	the	program	will	continue	normally	after	 the
try/catch/finally	 block.	 You	 can	 rethrow	 the	 error	 in	 the

catch	 block,	 which	 will	 continue	 to	 “bubble	 up”	 the
exception	 so	 our	 caller	 can	 handle	 the	 error	 after	 we
recognize	it	(maybe	we	log,	then	rethrow).

let	color:	Color;
let	line:	Line;
const	start	=	new	Point(100,	100);
const	end	=	new	Point(200,	200);
try	{
				color	=	new	Color(0,	green,	0);
}	catch	(e)	{
				console.log(e);
				color	=	new	Color();
}	finally	{
				line	=	new	Line(start,	end,	color);
}

Here	 we	 try	 to	 create	 a	 color.	 If	 the	 color	 is	 valid,	 it	 is
created,	 if	 not,	 the	 error	 is	 logged	 to	 the	 console,	 and	 a
default	color	object	is	created.
The	finally	block	runs	after	either	way.	It	creates	a	line	with
the	newly	defined	color.	We	have	handled	the	exception	and
our	 code	will	work,	 even	 if	 the	 value	of	 green	 is	 invalid.	 It
will	either	create	a	green	line	if	green>=0	&&	green<=256
or	the	default	colored	line	if	not.

let	color:	Color;
let	line:	Line;
const	start	=	new	Point(100,	100);
const	end	=	new	Point(200,	200);
try	{
				color	=	new	Color(0,	green,	0);
}	catch	(e)	{
				console.log(e);
		color	=	new	Color();
}
line	=	new	Line(start,	end,	color);

A	note	about	finally.	In	this	code	it	is	not	necessary	since	the
code	 continues	 after	 the	 try/catch	 either	 way,	 so	 we	 can
remove	 it	 and	 just	 let	 the	 program	 continue	 with	 creating
the	 line.	There	are	many	use	 cases	where	we	don’t	need	a
finally	block,	but	there	are	some	where	we	do.

Here	is	a	case	where	finally	is	useful:

import	*	as	fs	from	"fs";
let	fileDescriptor:	number;
let	fileContents:	string;
try	{
				fileDescriptor	=	fs.openSync("test.txt",	"r");
}	catch	(e)	{
				throw	new	Error("Could	not	open	file	test.txt");
}
try	{
				fileContents	=	fs.readFileSync(fileDescriptor,	"utf8");
}	catch	(e)	{
				throw	new	Error("Could	not	read	file	test.txt");
}	finally	{
				console.log("Closing	file");
				fs.closeSync(fileDescriptor);
}
console.log(fileContents);

If	I	have	an	open	file,	and	encounter	an	error	while	reading
it,	 we	want	 to	 rethrow	 the	 exception,	 but	 first	 we	want	 to
close	the	file.
This	 code	opens	 the	 file,	 tries	 to	 read	 it,	 and	 regardless	 of
success	or	not,	closes	the	file.
On	success	it	prints	the	contents,	and	on	error	it	throws	an
exception

Common	Pitfalls	and	Mistakes
Throwing	a	string	instead	of	an	Error:	Allowed	but	bad
form

Using	exceptions	to	communicate	non-exceptional
situations.	These	are	designed	for	expressing	error
conditions,	and	should	not	be	used	as	a	way	to	return
data	in	normal	execution.

If	we	want	the	exception	to	continue	to	bubble,	we	must
rethrow	it,	or	throw	a	new	exception	of	our	own.
throw	e 	or	 throw	new	Error(“This	is	my	error”)

Summary
In	 summary,	 when	 writing	 our	 code	 we	 should	 program
defensively.
When	 a	 method	 or	 code	 block	 accepts	 input,	 throw	 an
exception	if	the	input	is	not	valid.
We	can	override	(extend)	 the	Error	class	 to	create	our	own
more	detailed	Error	classes	for	our	exceptions.
The	thrown	exception	will	“bubble	up”	through	the	code	that
called	the	code	that	threw	the	exception,	all	the	way	to	the
top	of	the	call	stack.	If	nothing	handles	it,	then	the	program
terminates	and	displays	the	exception	and	the	full	call	stack.
We	 can	 catch	 a	 thrown	 exception	 with	 the	 try/catch	 or
try/catch/finally	 constructs.	 These	 consume	 the	 exception
(stop	bubbling).

7.2)	Comments
Producing	 well	 documented,	 high	 quality,	 efficient	 and
readable	code	is	always	the	goal	in	software	development.

Code	Quality	in	General
Why	comments?
Helps	others	(and	yourself)	use	your	code	without	having	to
read	it.	Informs	user	of	everything	they	need	to	know	to	use
your	method	or	class.
If	 in	 the	 correct	 format,	 they	 can	 automatically	 produce
documentation.
If	 in	 the	 correct	 format,	 they	 can	 be	 read	 by	 IDE’s	 like
vscode.

Why	naming	matters?
If	we	do	need	to	revisit	our	code	(and	we	will),	having	well
named	variables	 and	methods	makes	 figuring	out	what	 the
code	is	doing	internally	much	easier.
Our	classes	will	be	easier	to	use	if	our	public	interface	uses
names	 that	make	 sense	 given	 the	 purpose	 of	 the	 thing	we
are	referencing.

Code	Quality
This	 is	 a	 general	 measure	 of	 how	 good	 the	 code	 is.	 It
includes:

Efficiency	(more	on	this	next	semester)

Readability

Comments,	naming,	indenting,	consistency	of	the
code,	adherence	to	standards,	etc.

Usability

How	easy	to	use	is	the	code.	If	it	is	a	class,	how	easy
is	it	to	create	objects	or	extend.	How	easy	is	it	to
make	changes.	If	a	program,	how	what	is	the	user
experience	like?

Comments
At	 this	 point,	 you	 should	 be	 convinced	 you	 that	 comments
are	 worth	 your	 time.	 Now	 lets	 look	 at	 how	 to	 format	 a
comment	in	typescript	to	make	it	more	usable.
We	are	using	 the	 jsdoc	 format	 for	 our	 comments.	 This	 is	 a
good	 solution	 because	 we	 can	 automatically	 generate	 our
documentation	 of	 our	 classes	 and	 methods,	 as	 well	 as
provide	tool	tip	help	in	vscode	(and	other	IDEs).

The	most	common	tags	available	to	us	for	jsdoc	are:

@param @private @example @override

@returns @protected @memberof @implements

@description @throws @property @interface

@class @export @function

Some	 of	 these	 are	 for	 constructs	we	 have	 not	 learned	 yet,
but	all	but	2	can	be	understood	now.

/**
	*	A	class	that	represents	a	polygon.
	*	@class	Polygon
	*	@extends	Drawable
	*	@description	A	class	that	represents	a	polygon.
	*	@method	clone	A	method	that	returns	a	new	polygon	object	
that	is	a	clone	of	the	current	polygon	object.
	*	@method	draw	A	method	that	draws	the	polygon	on	the	
drawing	surface.
	*	@throws	An	error	if	the	number	of	points	is	less	than	3	
or	greater	than	10.
	*	@throws	An	error	if	there	are	duplicate	points.
	*/
class	Polygon	extends	Drawable	{
			.	.	.

Here	is	a	well	formatted	comment	for	the	polygon	class.
Note	it	tells	us	everything	we	need	to	know	about	the	class
to	use	it.
It	also	describes	the	exceptions	that	it	may	throw.

We	should	also	comment	the	methods	inside	our	class.	This
is	what	a	comment	for	the	constructor	might	look	like:

/**
					*	Create	a	new	polygon	object.
					*	@param	{Point[]}	points	Array	of	vertices	of	the	
polygon.
					*	@param	{Color}	color	The	color	of	the	polygon.
					*	@throws	An	error	if	the	number	of	points	is	invalid
					*	@throws	An	error	if	there	are	duplicate	points.
					*	@sideEffects	Allocates	a	new	polygon	object.
					*	@memberof	Polygon
					*	@constructor
					*	@example
					*	let	p1	=	new	Point(0,	0);
					*	let	p2	=	new	Point(0,	1);
					*	let	p3	=	new	Point(1,	1);
					*	let	polygon	=	new	Polygon([p1,	p2,	p3],	new	
Color());
*/
				constructor(points:	Point[],	color:	Color)	{

We	see	the	parameters	and	their	types	and	description.

What	exceptions	to	expect

It’s	side	effects

It’s	parent	class

It	is	a	constructor

An	example	of	how	to	use	it.

The	clone	method	as	well:

/**
					*	Return	a	deep	copy	of	our	polygon	object	in	a	new	
one.
					*	@description	Clones	a	polygon	object
					*	@param	none
					*	@returns	A	new	polygon	object	that	is	a	clone	of	the	
current	polygon	object.
					*	@override	The	clone	method	of	the	Drawable	class.
					*	@memberof	Polygon
					*	@function	clone
					*	@sideEffects	Allocates	a	new	polygon	object.
					*	@example
					*	let	p1	=	new	Point(0,	0);
					*	let	p2	=	new	Point(0,	1);
					*	let	p3	=	new	Point(1,	1);
					*	let	polygon:Polygon	=	new	Polygon([p1,	p2,	p3],	new	
Color());
					*	let	polygon2:Polygon	=	polygon.clone();
					*/
				clone():	Polygon	{

We	see	the	parameters	and	their	types	and	description.

The	return	values

It’s	side	effects

It’s	parent	class

It	is	a	function

An	example	of	how	to	use	it.

Why	bother	with	all	this	formatting?

Look	what	happens	when	 I	hover	over	 the	polygon	class	 in
vscode	now.	I	now	get	help	on	using	this	class	constructor.
We	 can	 also	 generated	 detailed	 technical	 documentation
automatically	by	using	the	typedoc	command.

Quality,	 well	 formatted	 comments	 make	 your	 code	 more
usable,	manageable,	and	maintainable.

There	are	other	things	we	can	do	to	improve	code	quality	as
well.

Summary
Clear,	 straight	 forward	 comments	 on	 our	 code	 make	 our
code	more	useful.	We	can	 specify	details	 about	how	 to	use
the	 code,	 what	 its	 limitations	 are,	 if	 it	 throws	 exceptions,
and	 what	 it	 expects	 and	 returns.	 If	 formatted	 using	 jsdoc,
then	we	 can	 also	 get	 help	 in	 IDEs	 like	 Visual	 Studio	 Code
and	 generate	 a	 detailed	 documentation	 website	 using
typedoc.

7.3)	Naming
Naming	 elements	 in	 a	 way	 that	 we	 can	 tell	 what	 type	 of
thing/data	 the	 element	 is/contains	 makes	 code	 more
readable.

What’s	in	a	name?
Consider	the	following	class:

class	A	{
		constructor(public	X:	string,public	Y:number)	{}
}

What	do	objects	of	this	class	represent?

Can	we	tell	what	it	is	and	when	to	use	it?

Do	we	know	what	the	parameters	represent?

What	is	its	purpose,	why	does	it	exist?

Rewritten	with	meaningful	names:

class	Person	{
		constructor(public	name:	string,public	age:number)	{}
}

Now	it	is	clear	what	this	class	represents.

It	is	clear	what	the	meaning	of	the	parameters	are

It	is	clear	why	this	class	exists	and	when	we	would	use	it.

It’s	not	that	hard	to	do	it	right.

A	more	complex	example

class	Jane	{
				constructor(
								public	lisa:	number,
								public	bill:	number,
)	{}
				f():	string	{
								return	`${this.lisa}e${this.bill}`;
				}
				g(other:	Jane):	Jane	{
								if	(this.bill	===	other.bill)	{
												return	new	Jane(this.lisa	+	other.lisa,	
this.bill);
								}	else	{
												const	expDiff	=	Math.abs(this.bill	-	
other.bill);
												if	(this.bill	>	other.bill)	{
														return	new	Jane(
																this.lisa	+	other.lisa	*	Math.pow(10,	
expDiff),
																this.bill,
);
												}	else	{
														return	new	Jane(
																this.lisa	*	Math.pow(10,	expDiff)	+	
other.lisa,
																				this.bill,
);
												}
								}
				}
}

What	does	Jane	represent

What	does	f	do?

What	does	g	do?

Why	did	someone	write	this?

While	 a	 somewhat	 extreme	 example,	 bad	 naming	 is	 quite
common,	and	makes	no	sense	to	do.

A	much	better	code	block	with	proper	naming	makes	things
clear:

class	RealNumber	{
				constructor(
								public	integer:	number,
								public	exponent:	number,
)	{}
				toString():	string	{
								return	`${this.integer}e${this.exponent}`;
				}
				add(other:	RealNumber):	RealNumber	{
								if	(this.exponent	===	other.exponent)	{
												return	new	RealNumber(this.integer	+	
other.integer,	this.exponent);
								}	else	{
												const	expDiff	=	Math.abs(this.exponent	-	
other.exponent);
												if	(this.exponent	>	other.exponent)	{
																return	new	RealNumber(
																				this.integer	+	other.integer	*	
Math.pow(10,	expDiff),
																				this.exponent,
);
												}	else	{
																return	new	RealNumber(
																				this.integer	*	Math.pow(10,	expDiff)	+	
other.integer,
																				this.exponent,
);
												}
								}
				}
}

It’s	clear	what	the	class	represents

It’s	clear	what	toString	does

It’s	clear	what	add	does

It’s	clear	what	this	is	for.

Summary
When	writing	code,	choosing	good	names	that	represent	the
objects	or	purpose	of	classes,	variables,	or	functions	makes
it	 possible	 to	 figure	 out	 what	 the	 code	 does	 and	 makes	 it
easier	to	maintain	and	use.

7.4)	General	Code	Quality
Programmers	should	always	try	to	create	efficient,	readable,
and	maintainable	code.	It’s	not	that	hard	to	do	it	right.

Best	Practices

Good	 formatting,	 indenting,	 and	 consistency	 of	 style	 are
important	 to	 maintaining	 a	 large	 code	 base.	 Many
organizations	will	dictate	these	types	of	things.

Indents	are	2	or	4	spaces

Braces	at	the	end	of	lines	or	on	a	new	line

Parameters	on	one	line	or	multiple	lines

The	list	goes	on.	There	are	best	practices,	but	while
many	are	agreed	upon,	some	are	preferences.

Rule	number	1:	be	consistent.

Summary
When	coding,	 remember	you	are	not	 the	only	one	who	will
look	 at	 your	 code.	 Others	 will	 be	 responsible	 for
maintaining,	 updating,	 or	 using	 the	 code	 you	 produce.
Writing	 well	 comments,	 well	 named,	 clear	 and	 consistent
code	is	critical	to	success	as	a	software	developer.

Chapter	Summary
In	 order	 to	 write	 better	 programs,	 we	 must	 handle
exceptional	 cases.	 The	 exception	 handling	 process
(try/catch/finally)	 gives	 us	 a	 mechanism	 to	 easily	 handle
these	cases.

Code	should	be	readable,	maintainable,	and	understandable.
Good	 comments	 are	 critical.	 Naming	 of	 functions,	 classes,
and	variables	so	that	their	names	represent	the	information
they	will	hold	or	action	they	will	take	is	also	important.

8)	Software	Testing

8.1)	Testing
What	we	are	concerned	with	in	software	testing:

Validate	the	software	is	bug	free

Validate	the	software	meets	requirements

Validate	the	software	behaves	as	expected	on	boundary
cases

Validate	the	software	behaves	as	expected	on	exceptional
cases

Verification	and	Validation
Verification	refers	to	the	set	of	tasks	that	ensure	that
the	software	correctly	implements	a	specific	function.	It
means	“Are	we	building	the	product	correctly?”.

Validation	refers	to	a	different	set	of	tasks	that	ensure
that	the	software	that	has	been	built	is	traceable	to
customer	requirements.	It	means	“Are	we	building	the
correct	product?”.

Motivation
A	little	history	to	motivate	the	discussion.

Software	bugs	can	be	expensive,	but	 they	can	also	be	very
dangerous.	 Here	 are	 a	 few	 examples	 of	 software	 bugs
causing	terrible	outcomes:

1985:	Canada’s	Therac-25	radiation	therapy
malfunctioned	due	to	a	software	bug	and	resulted	in
lethal	radiation	doses	to	patients.

1994:	China	Airlines	Airbus	A300	crashed	due	to	a
software	bug	killing	264	people.

1999:	A	software	bug	caused	the	failure	of	a	$1.2	billion
military	satellite	launch.

2015:	A	software	bug	in	an	F-35	resulted	in	it	being
unable	to	detect	targets	correctly.

Starbucks	was	forced	to	close	more	than	60%	of	its	outlet
in	the	U.S.	and	Canada	due	to	a	software	failure	in	its
POS	system.

Nissan	cars	were	forced	to	recall	1	million	cars	from	the
market	due	to	a	software	failure	in	the	car’s	airbag
sensory	detectors.

We	have	to	get	it	right!!!

Types	of	testing
Functional:	Does	it	do	what	it	is	supposed	to	do?	Does	it
meet	requirements?	Does	it	work	correctly	on	all	possible

inputs?

Non-Functional:	How	does	it	perform	on	various	inputs?
Does	it	scale?	How	usable	is	it?	How	does	it	behave
under	heavy	use/load?

Regression	Testing:	After	the	software	is	modified,
verify	that	the	modifications	did	not	damage	previously
working	components	of	the	system.

Testing	levels
Unit	testing:	Test	small	independent	components	for
correct	behavior.	The	purpose	is	to	validate	that	each
unit	of	the	software	performs	as	designed.

Integration	testing:	Combining	units	and	testing	as	a
group.	The	purpose	of	this	level	of	testing	is	to	expose
faults	in	the	interaction	between	integrated	units.

System	testing:	Tests	of	the	completed	system.	The
purpose	of	this	test	is	to	evaluate	the	system’s
compliance	with	the	specified	requirements.

Acceptance	testing:	Test	to	ensure	compliance	with	the
requirements	specification.	The	purpose	of	this	test	is	to
evaluate	the	system’s	compliance	with	the	business
requirements	and	assess	whether	it	is	acceptable	for
delivery.

Best	Practices
Test	continuously	throughout	the	development	process.

Make	tests	small	and	include	many	to	make	finding
issues	easier

Use	tools	to	evaluate	things	like	code	coverage	to	ensure
thorough	testing

Don’t	skip	regression	testing.

Some	comments	from	experience:

While	time	consuming,	testing	is	critical	to	writing	good
software	systems.

Poorly	written	tests	are	like	having	no	tests	at	all.	This
requires	some	thought.

Failure	to	write	tests	will	eventually	cause	problems	in
any	system	of	a	reasonable	size.

Seemingly	unrelated	code	segments	can	and	do	break
each	other.

Test	after	each	change	to	aid	in	solving	issues	that	arise
as	you	code.

In	 other	 words,	 you	 should	 write	 tests	 early	 in	 the
process.	Possibly	even	before	writing	a	line	of	code.

Good	Tests
So	what	makes	a	good	test?
Start	 at	 the	 unit	 level	 (function)	 and	 validate	 that	 the
function	behaves	as	expected	in	all	cases.

Make	sure	you	test	its	behavior	on	edge	cases

Make	sure	you	test	its	behavior	on	exceptional/invalid
inputs

Make	sure	your	comments	document	the	behavior	in
exceptional/invalid	instances.	(ie.	Does	it	replace	the
value,	throw	an	exception)
Once	you	have	unit	tests,	start	testing	higher	level
operations	(i.e.	instantiate	classes	that	use	your	unit
tested	code.	Simulate	the	overall	behavior	of	the	system.
Again,	use	the	same	methodology.

Understanding	what	to	test.
We	will	be	using	 jest	 to	write	 tests	 in	Typescript.	You	have
already	seen	this	 in	 lab,	but	now	we	are	going	to	write	our
own	tests.
Jest	 provides	 a	 format	 for	 writing	 tests	 in	 a	 simple	 and
organized	way.
Jest	 can	 run	 tests	 on	 the	 entire	 system	 or	 on	 individual
components.
Jest	 can	 produce	 a	 coverage	 report	 to	 let	 you	 know	which
lines	are	not	“covered”	by	the	test	(i.e.	functions	not	called,
branches	not	taken,	etc.)
Testing	can	easily	be	built	into	the	build	cycle,	so	that	tests
are	run	as	part	of	each	build.

Here	 is	 some	 simple	 code	 that	 adds	 the	 root	 of	 the	passed
value	to	an	array.

const	valueArray:number[]=[];
/**
	*	@description	Takes	a	number	and	adds	its	square	root	to	
the	array	valueArray
	*	@param	value	{number}	-	The	number	to	be	squared
	*	@returns	{number}	-	The	square	root	of	the	number
	*	@sideEffects	-	Adds	the	square	root	of	the	number	to	the	
valueArray
	*/
function	addToRootArray(value:number):number{
				const	root=Math.sqrt(value);
				valueArray.push(root);
				return	root;
}

Let’s	start	by	asking	what	we	might	want	to	know	about	how
this	code	behaves,	and	how	we	could	test	that:

How	does	it	behave	on	a	positive	integer?

Pass	it	one	and	verify	contents	of	the	array

How	does	it	behave	on	a	positive	real	number?

Pass	it	a	positive	real	number	and	verify	contents	of
the	array

How	does	it	behave	when	passed	a	0.

Pass	it	a	0	and	verify	the	contents	of	the	array

How	does	it	behave	on	a	negative	integer.

Pass	it	a	negative	integer	and	verify	the	contents	of
the	array

How	does	it	behave	on	a	negative	real	number?

Pass	it	a	negative	real	and	verify	the	contents	of	the
array

How	does	it	behave	when	the	array	is	empty/populated
already?

Create	various	arrays	with	0,	1,	2,	and	many
elements,	call	the	function	and	check	the	contents	of
the	array.

Are	 those	 behaviors	 what	 we	 expect	 and	 what	 is
documented?

And	here	is	another	example.

export	class	Elements	{
				private	stringArray:	string[]	=	[];
				/**
					*	@description	This	function	returns	and ​					*	removes	
the	last	element
					*	@returns	{string}	-	The	last	element	of	the
					*	array
					*	@sideEffects	-	Removes	the	last	element	of	
					*	the	array
					*/
				getLastElement():	string	{
								return	this.stringArray.pop();
				}
}

What	questions	might	we	ask	here?

Can	I	construct	one	of	these?

Call	the	constructor	and	verify

Does	it	work	normally?

Populate	with	some	items	and	try

What	happens	if	the	array	is	empty?

Ensure	array	is	empty	and	try

What	happens	if	the	array	has	only	one	element	in	it?
*Populate	with	1	item	and	try

To	 create	 tests	 in	 a	 project	 that	 is	 already	 configured	 for
jest,	we	create	files	with	the	word	‘test’	in	their	filename	(i.e.
myprogram.test.ts)

This	 can	 be	 changed,	 but	 our	 projects	 will	 be	 pre-
configured	to	work	this	way.

Running	jest	on	the	command	line	by	itself	within	the
project	folder	will	run	tests	in	all	properly	named	files.

Running	jest	on	the	command	line	with	the	name	of	the
file	(without	the	test.ts)	will	run	tests	in	only	that	file.

Running	jest	on	the	command	line	with	–coverage	will
produce	a	coverage	report.

Summary
Designing	 good	 tests	 and	 testing	 methodologies	 will	 help
create	software	that	can	be	validated	and	verified.	Different
levels	 of	 testing	 allow	 for	 testing	 individual	 functions,
classes,	 or	 sets	 of	 code	 as	 well	 as	 the	 full	 system.	 Before
writing	tests,	ask	what	types	of	thing	should	be	tested.	Make
sure	you	test	edge	cases	and	exceptional	situations	to	make
sure	you	have	covered	all	possible	inputs.

8.2)	Testing	in	Jest
Jest	is	a	test	runner	and	testing	framework	that	works	with
javascript	and	Typescript

Jest	Syntax
A	few	simple	commands	we	need:

describe:	Create	a	new	test	section

test:	Write	a	specific	test

expect:	expect	an	expression	to	behave	a	certain	way
Example:	expect(value).toBeInstanceOf(MyClass)

There	are	many	others,	but	we	can	get	by	with	 these
three	for	now.

Back	to	the	example	from	the	previous	section,	let’s	look	at
what	we	want	to	do	for	each	of	these:

class	Elements	{
				private	stringArray:	string[]	=	[];
				/**
					*	@description	This	function	returns	and
					*	removes	the	last	element
					*	@returns	{string}	-	The	last	element	of	the
					*	array
					*	@sideEffects	-	Removes	the	last	element	of	
					*	the	array
					*/
				getLastElement():	string	{
								return	this.stringArray.pop();
				}
}

We	will	start	with	a	describe	block	for	the	Elements	class:

describe("Elements",	()	=>	{
				//Our	tests	go	here
});

Can	I	construct	one	of	these?

describe("Elements",	()	=>	{
				test("Create	Instance",	()	=>	{
								const	elements	=	new	Elements();
								expect(elements).toBeInstanceOf(Elements);
				});
});

Does	 it	 work	 normally?	 Just	 create	 a	 test	 block	 that
populates	some	items	and	then	verify	them.

describe("Elements",	()	=>	{
				test("Array	populated	2	or	more",	()	=>	{
								const	elements	=	new	Elements();
								elements.stringArray=["a","b","c"];
								expect(elements.stringArray.length).toBe(3);
								const	value	=	elements.getLastElement();
								expect(value).toBe("c");
								expect(elements.stringArray.length).toBe(2);
								expect(elements.stringArray).toContain("a");
								expect(elements.stringArray).toContain("b");
								expect(elements.stringArray).not.toContain("c");
				});
});

Test	what	happens	when	the	array	is	empty.

describe("Elements",	()	=>	{
		test("Array	is	empty",	()	=>	{
						const	elements	=	new	Elements();
						elements.stringArray	=	[];
						expect(elements.stringArray.length).toBe(0);
						expect(elements.getLastElement()).toThrowError("Array	
is	empty");
				});
});

This	test	fails	because	we	don’t	throw	an	exception	and
neither	does	pop	which	we	are	using	to	implement	this.
We	need	to	fix	the	code.

class	Elements	{
				private	stringArray:	string[]	=	[];
				/**
					*	@description	This	function	returns	and
					*	removes	the	last	element
					*	@returns	{string}	-	The	last	element	of	the
					*	array
					*	@sideEffects	-	Removes	the	last	element	of	
					*	the	array
					*	@throws	{Error}	-	If	the	array	is	empty
					*/
				getLastElement():	string	{
								if	(this.stringArray.length	===	0)	throw	new	
Error("Array	is	empty");
								return	this.stringArray.pop();
				}
}

Note	 that	now	getLastElement	 throws	an	exception	 if
the	array	is	empty,	so	our	test	will	now	pass.

What	happens	if	the	array	has	only	one	element	in	it?

				test("Array	populated	1	item",	()	=>	{
								const	elements	=	new	Elements();
								elements.stringArray=["a"];
								expect(elements.stringArray.length).toBe(1);
								const	value	=	elements.getLastElement();
								expect(value).toBe(“a");
								expect(elements.stringArray.length).toBe(0);
								expect(elements.stringArray).not.toContain(“a");
				});

So	what	does	our	final	test	suite	for	this	code	look	like?

//	Currently	does	not	work	due	to	incomplete	Jest	
implementation.
class	Elements	{
				public	stringArray:	string[]	=	[];
				/**
					*	@description	This	function	returns	and
					*	removes	the	last	element
					*	@returns	{string}	-	The	last	element	of	the
					*	array
					*	@sideEffects	-	Removes	the	last	element	of	
					*	the	array
					*	@throws	{Error}	-	If	the	array	is	empty
					*/
				getLastElement():	string	{
								if	(this.stringArray.length	===	0)	throw("Array	is	
empty");
								return	this.stringArray.pop();
				}
}

describe("Elements",	()	=>	{
				test("Create	Instance",	()	=>	{
								const	elements	=	new	Elements();
								expect(elements).toBeInstanceOf(Elements);
				});
				test("Array	populated	2	or	more",	()	=>	{
								const	elements	=	new	Elements();
								elements.stringArray	=	["a",	"b",	"c"];
								expect(elements.stringArray.length).toBe(3);
								const	value	=	elements.getLastElement();
								expect(value).toBe("c");
								expect(elements.stringArray.length).toBe(2);
								expect(elements.stringArray).toContain("a");
								expect(elements.stringArray).toContain("b");
								expect(elements.stringArray).not.toContain("c");
				});
				test("Array	is	empty",	()	=>	{
								const	elements	=	new	Elements();
								elements.stringArray	=	[];
								expect(elements.stringArray.length).toBe(0);
								
expect(()=>elements.getLastElement()).toThrowError("Array	
is	empty");
				});
				test("Array	populated	1	item",	()	=>	{
								const	elements	=	new	Elements();
								elements.stringArray	=	["a"];
								expect(elements.stringArray.length).toBe(1);
								const	value	=	elements.getLastElement();
								expect(value).toBe("a");
								expect(elements.stringArray.length).toBe(0);
								expect(elements.stringArray).not.toContain("a");
				});
});

If	we	run	our	test	using	the	jest	command	line,	we	get

PASS		src/app/mathpain.test.ts
	
Test	Suites:	1	passed,	1	total
Tests:							4	passed,	4	total
Snapshots:			0	total
Time:								1.151	s

Here	I	see	that	all	4	tests	passed.
Now	I	know	that	the	class	method	works	as	expected,	in	all
of	the	cases	that	I	could	think	of.
I	 have	 also	 verified	 that	 it	 behaves	 as	 documented	 on
exceptions.
Once	 written	 this	 test	 will	 run	 every	 time	 I	 run	 tests,
handling	regression	testing	of	this	particular	method	of	this
class	 when	 future	 updates	 are	 made	 elsewhere	 in	 the
program.

Code	Coverage
Coverage	is	important	when	writing	tests
While	 you	 should	 not	 specifically	 write	 tests	 to	 coverage,
since	 those	 tests	 will	 not	 cover	 all	 possible	 inputs,	 you
should	make	 sure	 that	 your	 tests	 actually	 cover	 your	 code.
Let’s	look	at	our	example	again,	from	a	coverage	standpoint
Running:	 jest	 –coverage	will	 produce	a	 shortened	coverage
report	like	this:

---------------------|---------|----------|---------|-----
----|-------------------
File																	|	%	Stmts	|	%	Branch	|	%	Funcs	|	%	
Lines	|	Uncovered	Line	#s	
---------------------|---------|----------|---------|------
---|-------------------
All	files												|			97.61	|				92.66	|			94.84	|			
97.78	|																			
	EzComponent.ts						|					100	|						100	|					100	|					
100	|																			
	EzDialog.ts									|				93.1	|							75	|			83.33	|			
94.44	|	135-140											
	bind.decorators.ts		|			97.38	|				93.65	|			91.66	|			
97.27	|	601-602,621-622			
	bootstrap.ts								|					100	|						100	|					100	|					
100	|																			
	event.decorators.ts	|					100	|						100	|					100	|					
100	|																			
	eventsubject.ts					|					100	|						100	|					100	|					
100	|																			
---------------------|---------|----------|---------|------
---|-------------------

If	 we	 add	 --coverageDirectory=‘./coverage’ 	 to	 our	 jest
command	 with	 –coverage,	 we	 still	 get	 the	 same
information,	 but	 we	 also	 get	 a	 website	 with	 detailed
info	including	source	links.

Summary
Jest	is	a	powerful	platform	for	designing	suites	of	tests	that
cover	 all	 types	 and	 levels	 of	 code	 testing.	 Tests	 will	 run
automatically	when	 jest	 is	 run	providing	 regression	 testing
accross	the	application.

8.3)	Anonymous	Functions
A	function	that	 is	declared	with	no	name	is	an	anonymous
function.

Normal	functions
Normally,	when	we	create	a	function	or	method,	we	define	it
with	a	name	that	we	can	use	to	reference	it	(call	it)	later.

function	MyName(a:number,b:number):number{
				return	a+b;
}
class	MyClass{
				MyName(a:number,b:number):number{
								return	a+b;
				}
}

We	 can	 then	 call	 or	 reference	 that	 method	 by	 its	 defined
name

let	a=MyName(1,2);
let	b=new	MyClass().MyName(1,2);

This	is	normal	and	a	reasonable	way	to	access	methods	and
function	in	any	programming	language.
Sometimes,	however,	we	just	need	a	function	right	where	we
want	 to	 use	 it,	 and	 it	 is	 easier	 to	 be	 able	 to	 provide	 the
function,	rather	than	declare	it	elsewhere.

Anonymous	functions
We	 have	 already	 seen	 this	 in	 our	 jest	 tests	 in	 both	 the
describe	method	and	the	test	method.
Let’s	 take	 a	 closer	 look	 at	 the	 second	 parameter	 to	 the
describe	and	test	methods.

describe('Test	Name',()=>{
				test('Test	MyName',()=>{
								let	a=MyName(1,2);
								expect(a).toBe(3);
				});
				test('Test	MyClass',()=>{
								let	b=new	MyClass().MyName(1,2);
								expect(b).toBe(3);
				});
});

This	 parameter	 is	 an	 anonymous	 function.	 It	 is	 a	 function
that	takes	no	arguments,	and	contains	the	statements	inside
the	{}	block.

NOTE:	 We	 are	 not	 calling	 this	 method,	 we	 are	 just
passing	it	in	as	an	argument	to	describe	or	test.

We	could	do	this	the	hard	way,	and	create	a	named	function
and	 pass	 that	 as	 the	 second	 parameter,	 but	 we	 are	 only
using	it	once,	and	it	 is	much	easier	to	see	what	is	going	on
this	way.
Anonymous	functions	behave	like	any	other	function.	We	can
declare	 them,	 call	 them,	 and	 pass	 them	 around	 as
parameters	to	functions.	Functions	in	typescript	are	what	is
referred	to	as	first	class	objects.

Syntax
Let’s	look	at	the	overall	structure	of	an	anonymous	function:

So	what	can	we	do	with	this:

We	have	already	seen	that	we	can	pass	it	as	a	parameter
to	another	method	as	in	“describe”	and	“test”

Many	methods	in	typescript	can	take	a	function	as	a
parameter	including	filter,	map,	find,	reduce,	etc.	We	can
use	anonymous	functions	there	as	well.

Since	functions	are	first	class	objects,	we	can	also	store
them	in	variables	(i.e.	function	as	value)

Example
Let’s	look	at	an	example	of	removing	negative	values	from	a
list.
We	already	know	how	to	do	this	with	a	for	loop.
We	 can	 iterate	 through	 the	 list,	 adding	 non-negative
numbers	to	a	new	list,	which	we	then	return.

let	arr:number[]=[1,-2,3,-4,5];

function	removeNegativesFor():number[]{
				const	newArr:number[]=[];
				for	(let	num	of	arr){
								if(num>=0){
												newArr.push(num);
								}
				}
				return	newArr
}

There	is	another	way	to	accomplish	this	using	the	typescript
Array.filter	method

let	arr:number[]=[1,-2,3,-4,5];
function	removeNegatives():number[]{
				return	arr.filter((x:number)=>{
								return	x>=0
				});
}

The	 filter	 method	 takes	 a	 function	 that	 returns	 true	 if	 we
want	the	value	included	in	the	returned	list,	and	false	if	we
want	it	removed	from	the	list.
Here	the	anonymous	function	is:	 (x:number)=>{return	x>=0} .
Now	we	can	use	 filter	 to	 filter	any	 list	by	providing	such	a
method	to	specify	what	we	want	in	the	list.

If	 an	 anonymous	 function	 only	 contains	 a	 single	 statement
that	 returns	 a	 value,	 then	 we	 can	 shorten	 this	 syntax	 by
removing	the	braces	and	the	return.
Now	the	anonymous	function	is:	 (x:number)=>x>=0
This	 gives	 a	 clean	 concise	 way	 to	 pass	 around	 simple
methods	without	naming	them.

let	arr:number[]=[1,-2,3,-4,5];
function	removeNegatives():number[]{
				return	arr.filter((x:number)=>x>=0);
}
console.log(removeNegatives());

But	wait,	there’s	more.

First	Class	Objects
Being	 first	 class	 objects	 functions	 can	 be	 used	 in	 many
places.

As	a	paramter	to	methods

function	removeNegatives():number[]{
				return	arr.filter((x:number)=>x>=0);
}

As	the	value	of	a	variable	or	class	property

let	f:(z:number)=>boolean=(x:number)=>x>=0;

As	the	return	value	of	a	function

function	getGTFunction(num:number):(x:number)=>boolean{
				return	(x:number)=>x>num;
}

Functions	have	types
A	function	type	is	defined	by	its	parameters	and	return	type
We	 can	 define	 variables	 to	 be	 of	 that	 type,	 then	 store
functions	in	that	variable.

let	f:(x:number)=>Boolean
f=(x:number)=>x>=0;

We	can	them	call	 those	 functions	 just	 like	we	would	 if	 they
were	defined	with	a	name.

let	f:(x:number)=>boolean=(x:number)=>x>=0;
let	b=f(4);
let	c=f(-4)

We	can	even	declare	a	type	to	use	for	our	functions.

declare	type	ChkFunction=(x:number)=>boolean;
let	f:ChkFunction=(x:number)=>x>=0;

Summary
Annonymous	 functions	 are	 a	 useful	 shortcut	 for	 passing
functionality	 around	 a	 program,	 either	 as	 a	 variable,	 a
parameter,	or	a	return	value.	They	are	typed	by	the	types	of
their	parameters	and	return	value.

9)	Webz	Introduction

9.1)	Web	Basics
Learning	 to	 develop	 web	 applications	 is	 a	 critical	 skill	 for
software	developers.

Review	of	Web	Basics
The	 internet	 is	 the	network	over	which	many	protocols	can
be	transmitted	(like	email,	IM,	www,	etc).
DNS	 (Domain	Name	Service)	 is	a	distributed	database	 that
maps	 names	 to	 network	 addresses	 (e.g.	 udel.edu	 =>
128.175.13.247)
One	 of	 the	 protocols	 the	 internet	 supports	 is	 Hyper	 Text
Transport	Protocol	(http)	or	it’s	secure	cousin	(https).
Over	this	protocol,	we	send	regular	text	files,	that	contain	a
specialized	 language	 called	 HyperText	 Markup	 Language
(html)	 that	 tells	 a	 web	 browser	 reading	 the	 file	 how	 to
render	the	page.
That’s	 right,	 the	web	 is	 basically	 just	 a	 bunch	 of	 text	 files
(and	a	lot	of	cat	videos).

HTML	Basics
HTML	 is	 a	 simple	 tag	 based	 language	where	 elements	 are
defined	with	an	opening	and	closing	tag

<p>Something</p>
<button>Click	Me</button>
Something	else

	(has	no	body,	so	no	closing	tag
These	tags	can	be	nested	inside	of	each	other
Hello	<button>Click</button></br>World

If	 a	 tag	 is	 inside	 another	 tag,	 it	 can	 be	 affected	 by	 the
parent’s	size,	position,	and	style.

Common	HTML	Tags
Common	tags:

<div></div> 	:	Create	a	block	which	can	be	styled.

<p></p> 	:	A	paragraph

<input	type=“text”	/> 	:	An	input	box

<input	type=“password”	/> 	:	An	input	box	with	the	letters
obscured

<input	type=“radio”	/> 	:	A	radio	button

<input	type=“checkbox”	/> 	:	A	checkbox

<button>Button	Text</button>

 	:	An	enclosing	element	that	doesn’t	do
much	but	can	be	styled.

<select><option>1</option><option>2</option></select> 	:	A

drop	down

HTML	Tags	in	action

<div>
		<p>Here	is	the	first	paragraph	of	text</p>
		<p>Here	is	the	second	paragraph	of	text</p>
</div>

Here	are	two	of	the	common	tag	types.	The	outer	div	is	not
really	 doing	 anything	 other	 than	 grouping	 the	 other	 tags,
but	 later	we	will	 learn	 to	 style	 that	 div	which	will	make	 it
important.

The	2	paragraph	tags	simply	output	the	text	to	the	browser
with	paragraph	spacing	between	them.

If	we	want	less	spacing	between	the	two	lines	of	text,	we	can
use	 a	 line	 break	 instead	 of	 putting	 the	 text	 in	 paragraph
tags.

<div>
		Here	is	the	first	paragraph	of	text

		Here	is	the	second	paragraph	of	text
</div>

By	removing	the	 <p></p> 	tags,	and	adding	a	
 	I	get	line
spacing	instead	of	paragraph	spacing.

You	can	set	various	attributes	on	each	tag.	Here	is	a	simple
login	screen:

<div>
				<input	type="text"	placeholder="User	Name"/>
				<input	type="password"	placeholder="Password"/>

				<button>Login</button>
				<button>Register</button>

				<input	type="checkbox"/>	
				Remember	Me?
</div>

Notice	 the	 placeholder	 attribute	 being	 set	 (and	 the
type	attribute)

Here	is	a	set	of	radio	buttons:

<div>
				Please	select	an	option:

				<input	type="radio"	name="option"	value="1"/>	
				Option	1

				<input	type="radio"	name="option"	value="2"/>	
				Option	2

				<input	type="radio"	name="option"	value="3"/>	
				Option	3

</div>

If	radio	buttons	have	the	same	name	property,	they	will
act	 as	 a	 group,	 where	 selecting	 one	 deselects	 the
others.

Here	is	a	dropdown	box:

<div>
				Please	select	an	option:

				<select	id="options">
								<option	value="1">Option	1</option>
								<option	value="2">Option	2</option>
								<option	value="3">Option	3</option>
				</select>
</div>

Web	Development	in	VS-Code

Clicking	 this	 button,	 will	 bring	 up	 a	 preview	 panel	 on	 the
right	which	will	change	automatically	as	you	edit	the	file.

Styling	and	CSS
Styling	 our	 elements	 allows	 us	 to	 alter	 colors,	 shapes,
behaviors,	appearance,	and	placement.
There	are	basically	a	few	ways	to	style:

Style	a	tag:	Note:	This	styles	all	tags	of	that	type,	so
should	not	be	used

Inline	style:	Add	the	style	attribute	in	the	html	and	set
styles	there.

Style	a	class:	We	can	add	one	or	more	CSS	classes	to	any

element,	and	they	will	take	on	that	style.	The	style	affects
all	elements	with	that	class.

Style	a	specific	element:	We	can	apply	a	style	to	an	id
(remember	from	a	few	slides	ago).	The	style	will	only
affect	that	element.
Often	these	styles	are	placed	in	a	separate	file	with	a	.css
extension	(stands	for	cascading	style	sheets).

Returning	 to	 our	 login	 screen	 example,	 we	 have	 added	 id
and	 class	 attributes	 to	 our	 elements	 to	 allow	 us	 to	 style
them.

<div	id="loginForm">
				<input	type="text"	id="username"	placeholder="User	
Name"/>

				<input	type="password"	id="password"	
placeholder="Password"/>

				<button	id="loginBtn"	class="btn">Login</button>
				<button	id="registerBtn“	class="btn">Register</button>

				<input	id="rememberMe"	type="checkbox"	
id="rememberMe"/>	Remember	Me?
</div>

Note:	This	does	not	change	the	appearance,	but	we	can
use	 the	 id	 and	 class	 properties	 as	 references	 in	 our
style	sheet.

First	let’s	style	the	div.	It	has	an	id,	so	we	will	style	it	by	id.
To	reference	an	id	in	a	style,	we	put	a	#	in	front.
The	style	for	the	outer	div	tag	is	 #loginForm

#loginForm{
		text-align:	center;
		background-color:	cyan;
}
#loginForm	input{
		margin:	5px;
}

The	 first	 rule	 tells	 the	 loginForm	 div	 to	 center	 its	 content
horizontally	and	set	its	background	color.
The	second	is	a	combination	of	rule	selectors.	This	rule	says
to	style	all	input	tags	inside	the	element	with	id	 #loginForm .

Now	our	content	is	centered	in	the	div,	and	there	is	a	5	pixel
margin	around	all	of	the	input	elements	in	the	div.

How	 about	 the	 buttons.	 They	 were	 both	 defined	 with	 the
class	 btn 	and	because	we	want	 them	to	 look	 the	same,	we
can	use	the	class	name	to	style	both	of	them.	For	classes	we
specify	the	style	rule	by	preceiding	the	class	name	with	a	".",
so	 btn 	is	references	as	 .btn

.btn{
				background-color:	blue;
				color:	white;
				padding:	10px	20px;
				font-size:	16px;
				border-radius:	10px;
				margin:15px	0;
}

We	are	 setting	 the	 background	 and	 foreground	 colors.	 The
padding	 inside,	 the	 size	 of	 the	 text,	 spacing	 around	 the
buttons,	 and	 making	 the	 corners	 round.	 Notice	 it	 affects
both	buttons.

What	a	difference	it	makes	when	we	add	just	a	little	bit
of	styling	to	our	tags.

Box	Positioning

As	part	 of	 styling,	we	have	 a	 few	 very	 important	 styles	we
will	use	constantly.

position:	This	sets	how	the	element	is	positioned	within	its
parent.

relative:	The	most	common.	It	doesn’t	affect	the	object	it
is	applied	to,	but	it	causes	everything	inside	to	be
positioned	relative	to	the	object	to	which	it	is	*	applied.
By	default,	everything	is	page	relative	(ignores	the
parent)	unless	this	is	set.

absolute:	Positions	the	object	outside	the	normal	model.
This	object	has	no	affect	on	other	objects	(i.e.	next	object
could	be	at	the	same	position).

fixed:	Positioned	relative	to	the	window.	It	stays	there.

sticky:	Positioned	with	a	scrolling	window,	stays	in
position	relative	to	the	scroll	position.

display:	 (Too	 many	 to	 list,	 here	 are	 the	 ones	 you	 will
probably	use)

inline:	Next	element	will	be	right	after	it	(or	on	the	next
line	if	no	room).	Sizes	to	the	content

block:	Element	will	be	displayed	by	itself	vertically	and
can	be	sized	manually	with	width	and	height,	or	top,
button,	left,	and	right.

inline-block:	Best	of	both	worlds.	Sizable	but	still	can	be

next	to	each	other.

Don’t	Panic
There	are	many	html	tags,	and	styles.	I	am	not	sure	anybody
knows	 them	all.	They	 are	 not	 even	 100%	 consistent	 across
web	browsers.	You	only	need	a	few	to	do	everything.
We	will	provide	you	with	resources	to	look	up	what	you	need
and	vs	code	has	excellent	IntelliSense	with	html	and	styles.
This	 is	 an	 incredibly	 useful	 skill	 that	 is	 worth	 learning	 for
your	futures.

Summary
Learning	HTML	is	an	important	skill	as	web	applications	are
pervasive	both	for	internet	and	local	applications.	While	the
number	of	tags	and	styles	that	are	available	is	large,	with	a
few	 tags	 and	 styles	we	 can	build	 beautiful	web	 application
displays.	We	will	learn	much	more	about	this	as	we	begin	to
build	applicaitons	instead	of	static	web	pages.

9.2)	Beginning	WebZ
WebZ	 is	 a	 lightweight	 web	 framework	 designed	 for	 this
book.	It	uses	many	of	the	same	principals	as	more	advanced
web	 frameworks	 such	 as	React	 and	Angular,	 but	 simplifies
operations	to	focus	on	Typescript	development

Working	Example	of	Webz
import	{
				BindValue,
				BindStyleToNumberAppendPx,
				Click,
				WebzComponent,
				Timer,
}	from	"@boots-edu/webz";

const	html	=	`
				<div>
								Hello	
								<button	id="button">Click	me!</button>
								<div>
												Count:	
								</div>
				</div>
`;
const	css	=	`
button	{
				background-color:	blue;
				color:	white;

}
`;

class	MainComponent	extends	WebzComponent	{
				@BindValue("name")
				name:	string	=	"World";

				@BindValue("count")
				count:	string	=	"0";

				@Click("button")
				onClick()	{
								this.count	=	(parseInt(this.count,	10)	+	
1).toString();
				}
				
				constructor()	{
								super(html,	css);
				}
}

_setIframeVisible(true);
let	mainInstance	=	new	MainComponent();
let	mainElement	=	window.document.body;
mainElement.innerHTML	=	"";
mainInstance.appendToDomElement(mainElement);
console.log(mainInstance.name);

Overview

Once	we	have	some	html,	we	would	like	it	to	do	something.
That’s	where	the	typescript	comes	in.
You	can	create	a	web	application	without	a	framework,	but	it
can	be	difficult	 and	 requires	 a	deeper	knowledge	of	how	a
web	browser	works.
Many	 frameworks	 exist,	 but	 because	 they	 are	 for
commercial	 purposes,	 they	 are	 large	 and	 have	 steep
learning	curves	(angular,	vuejs,	react,	etc.)
We	 created	 WebZ	 to	 be	 a	 lighter	 weight,	 easier	 to	 learn
framework	 that	 will	 prepare	 you	 for	 more	 complex
frameworks	 that	 may	 come	 later	 and	 allow	 you	 to	 create
impressive	applications	without	a	steep	learning	curve	(still
a	curve,	just	not	as	steep).

The	WebZ	Model
The	WebZ	model	uses	standard	html	and	css	like	we	talked
about	 in	 the	 last	 section	 inside	 the	 basic	 unit	 of	 a
component.
Every	 project	 starts	 with	 1	 component	 called
MainComponent.	It	has	an	html	file,	a	css	file,	and	a	ts	file	to
get	you	started	(and	a	file	for	your	tests).
Additional	components	can	be	created	and	inserted	into	the
MainComponent	to	build	an	object-oriented	web	application.
Some	Key	design	points:

The	html	is	plain	html.

The	css	is	plain	css.

The	ts	file	uses	decorators	to	attach	methods	and
properties	of	the	class	to	the	html	by	the	element’s	id
attribute	(I	told	you	we	would	need	it	later).
The	finished	product	is	compiled	into	a	website	that	can
be	published	on	any	web	server.

Getting	Started	with	WebZ
To	 get	 started,	we	 need	 to	 install	 the	WebZ	 command	 line
tool	from	NPM.

npm	i	-g	@boots-edu/webz-cli

To	create	a	new	project	called	Example	Project,	we	can	use
the	cli	to	build	(scaffold)	the	code.

webz	new	first-example

This	creates	a	fully	working	website	with	one	component	in
it	(MainComponent)

This	installs	a	basic	WebZ	project	with	a	single	component	in
it	 that	 you	can	edit,	 and	a	 lot	 of	 support	 files	 that	 you	can
ignore.

You	are	only	 interested	 in	what	 is	 inside	 the	 src/app	 folder
(src\app	on	Windows)

WebZ	 is	 a	 component-based	 system.	 Individual	 elements
should	 be	 broken	 up	 into	 components	 and	 attached	 to	 the
web	document	in	the	constructor.
If	we	navigate	 to	 the	src/app	 folder	at	a	command	prompt,
we	can	add	more	components	using	the	CLI	interface.

webz	component	fancy-image

This	 will	 create	 a	 folder	 with	 the	 4	 files	 in	 it	 (Just	 like
MainComponent)

Here	you	can	see	the	structure	created	for	us.	This	does	not
attach	the	component	to	anything,	it	just	creates	the	files	for
us.

To	 add	 the	 FancyImageComponent	 somewhere	 inside
MainComponent	we	edit	the	files	for	MainComponent

First	the	html	(main.component.html)	(note	the	div	is	where
the	new	component	will	go	(image-holder).	The	buttons	are
to	allow	us	to	navigate	later	in	the	example):

<div	id="image-holder"></div>

<button	id="prev">Previous</button>
<button	id="next">Next</button>

And	the	typescript	class	(main.component.ts):

export	class	MainComponent	extends	WebzComponent	{
				private	fancyImg:FancyImageComponent	=	new	
FancyImageComponent();
				constructor()	{
								super(html,	css);
								this.addComponent(this.fancyImg,"image-holder");

				}
}

The	 div	 #image-holder 	 is	 where	 we	 attach	 our	 component.
We	have	also	added	two	buttons	which	we	can	use	to	control
our	fancy	image	component.

We	can	run	this	to	make	sure	it	worked	with	npm	run
start.	We	 should	 see	 the	 default	 text	 for	 fancy-image
and	2	buttons	on	the	screen.

Now	 we	 will	 add	 the	 html	 and	 css	 for	 the	 fancy-image
component.	 We	 will	 also	 put	 two	 images	 img1.jpg	 and
img2.jpg	into	the	assets	folder.

Replace	the	html	with:

Add	CSS	to	set	it’s	size:

#image{
				height:	300px;
}

How	we	have	a	place	for	our	image,	and	we	have	set	its	size.
What	we	want	to	do	is	have	a	variable	in	our	class	that	is	the
name	of	the	image	we	want	to	display.	The	image	property	in
the	following	code.

export	class	FancyImageComponent	extends	EzComponent	{
				public	imagePath:	string	=	"assets/img1.jpg";

				constructor()	{
								super(html,	css);
				}
}

To	 connect	 html	 elements	 and	 class	 properties,	 we	 use
typescript	decorators	 to	specify	how	to	attach	that	variable
to	the	html.	In	this	case	we	want	to	set	the	src	attribute	of
the	element	with	id	image.	This	will	cause	the	src	attribute
of	 the	 element	 with	 id	 image	 to	 contain	 the	 text	 in	 the
member	property	imagePath.

export	class	FancyImageComponent	extends	EzComponent	{
				@BindAttribute("image",	"src")		//this	is	the	decorator	
binding	src	attribute	of	element	with	id	image
				public	imagePath:	string	=	"assets/img1.jpg";

				constructor()	{
								super(html,	css);
				}
}

If	you	run	this	code	with	 npm	run	start 	you	will	see	the
image	displayed.

Decorator	transforms
While	this	 is	nice,	I	would	rather	use	a	numeric	value	(1	or
2)	 to	 select	 my	 image.	 I	 can	 do	 that	 in	 WebZ	 by	 using	 a
custom	transform.

@BindAttribute("image",	"src",	(imgNum:	number):	string	=>	
{
								return	`assets/img${imgNum}.jpg`;
})
public	image:	number	=	1;

Notice	that	we	pass	an	anonymous	function	to	the	bind
decorator	that	takes	a	number	and	returns	a	string.

Now	we	can	 just	change	 the	 image	number	and	 it	will	 just
modify	the	img	tag	to	load	the	correct	image.

Remember	 the	buttons	we	added	to	MainComponent.	What
do	we	want	them	to	do:

If	we	are	at	the	first	image,	disable	the	previous	button.

If	we	are	at	the	second	image,	disable	the	next	button.

If	next	is	pushed	increment	the	image	number

If	previous	is	pushed	decrement	the	image	number

So	first	we	need	variables	to	bind	to	the	disabled	attribute	of
the	 buttons	 so	 we	 can	 disable	 them.	 There	 is	 a	 special
decorator	 in	 WebZ,	 @BindDisabledToBoolean 	 that	 greatly
simplifies	this	process	for	us.

export	class	MainComponent	extends	EzComponent	{
				private	fancyImg:	FancyImageComponent	=	new	
FancyImageComponent();
				@BindDisabledToBoolean("prev")
				public	prevDisabled:	boolean	=	true;
				@BindDisabledToBoolean("next")
				public	nextDisabled:	boolean	=	false;
				.	.	.	//rest	of	class	omitted	for	brevity

Then	we	need	to	bind	the	button’s	click	events	to	a	function
that	increments/decrements	the	value	and	properly	sets	the
values	 of	 prevDisabled	 and	 nextDisabled.	 Notice	 that	 the
html	 id	of	 the	buttons	 is	prev	and	next.	We	use	 that	 in	 the
@Click	decorator	to	specify	which	button	we	are	binding.

				@Click("next")
				onNext(){
								this.fancyImg.image++;
								this.prevDisabled	=	false;
								if(this.fancyImg.image	===	2){
												this.nextDisabled	=	true;
								}
				}
				@Click("prev")
				onPrev(){
								this.fancyImg.image--;
								this.nextDisabled	=	false;
								if(this.fancyImg.image	===	1){
												this.prevDisabled	=	true;
								}
				}

If	next	is	pushed:

Increment	the	image	number

Enable	the	previous	button

Disable	the	next	button
if	prev	is	pushed:

Decrement	the	image	number

Disable	the	previous	button

Enable	the	next	button

If	 we	 run	 this	 with	 npm	 run	 start 	 we	 will	 initially	 see
imag1.jpg	displayed	and	our	buttons.

Clicking	hte	next	 enables	 the	previous	button,	 disables	 the
next	button	and	displays	img2.jpg.

There	really	 isn’t	much	more	to	 it.	Bind	decorators	connect
properties	 to	 elements.	 If	 we	 change	 the	 property,	 the
element	changes	(NOT	THE	OTHER	WAY	AROUND).
Event	 Decorators	 capture	 events	 from	 the	 web	 page
allowing	 us	 to	 react	 to	 those	 events.	 These	 are	 decorators

like	@Click(…)
We	 will	 cover	 some	 more	 advanced	 features	 in	 the	 next
chapter,	but	these	are	the	basics.

Decorators	in	WebZ

Bind	Decorators
General:

@BindAttribute(id,attr,?trans)

@BindCSSClass(id,class,?trans)

@BindStyle(id,style,?trans)

@BindValue(id,?trans)

Specialized:

@BindValueToNumber(id,?append)

@BindCSSClassToBoolean(id,class)

@BindDisabledToBoolean(id)

@BindVisibleToBoolean(id)

@BindStyleToNumber(id,style,?append)

@BindStyleToNumberAppendPx(id,style)

Event	Decorators
General:

@GenericEvent(id,eventType)	(e:Event)=>{}

@WindowEvent(eventType)	(e:WindowEvent)=>{}

@Timer(milliseconds)	(f:TimerCancelFunction)=>{}

Specialized:

@Blur(id)	(e:Event)=>{}

@Change(id)	(e:ValueEvent)=>{}

@Click(id)	(e:MouseEvent)=>{}

@Input(id)	(e:ValueEvent)=>{}

Note:	You	 can	only	use	 these	on	a	 class	derived	 from
WebzComponent.	All	classes	created	with	 the	CLI	will
automatically	subclass	WebzComponent.

References
HTML	References

Intro:	https://developer.mozilla.org/en-
US/docs/Learn/Getting_started_with_the_web/HTML_basics

Reference:	https://www.w3schools.com/tags/default.asp

CSS	References

Intro:	https://developer.mozilla.org/en-
US/docs/Learn/CSS/First_steps/Getting_started

Reference:	https://www.w3schools.com/cssref/index.php

Playgrounds

https://playcode.io/html

https://www.w3schools.com/tryit/

https://jsfiddle.net/

Summary
In	 this	 section	 we	 learned	 about	 the	Webz	 framework	 and
how	we	can	build	a	 simple	 interactive	application.	The	CLI
can	be	used	to	generate	new	projects,	and	add	components
to	an	existing	project.	We	can	then	attach	code	and	variables
to	 our	 html	 using	 the	 various	 decorators	 outlined	 in	 this
chapter.

Chapter	Summary

In	 this	 chapter	 we	 have	 learned	 the	 basics	 of	 web
development	 including	 html	 and	 css.	 We	 have	 introduced
WebZ	 which	 is	 a	 framework	 developed	 for	 this	 book.	 By
binding	 variables	 to	 element	 attributes	 and	 functions	 to
element	events,	we	can	build	complex	web	applications.

10)	Advanced	WebZ

10.1)	Dynamic	Components
We	can	create	and	attach	components	dynamically	 in	order
to	create	complex	applicaitons.

Building	dynamic	applications
Say	we	wanted	to	make	a	simple	point	of	sale	system.

Getting	the	customer	name	and	order	number	is	easy.	We
just	create	some	input	boxes	and	bind	the	@Input	event
to	a	function	that	updates	an	internal	variable.

We	can	easily	bind	the	@Click	event	of	buttons	to	add
new	items	to	our	order.

How	do	we	deal	with	a	variable	number	of	line	items	in
the	order?

Let’s	 start	 by	 creating	 a	 simple	 page	 in	 html/css	 for	 the
things	we	know	how	to	do,	and	a	div	to	hold	our	 line	 items
once	we	create	them.

<div	class="form-container">
				Customer	Name:	<input	type="text"	id="customerName"	/>

				Order	Number:	<input	type="text"	id="orderNumber"	/>
				<div	class="detail-header">
								Order	Details:									<button	
id="addItemButton">New	Item</button>
								<button	id="addCommentButton">New	Comment</button>
								<div	id="counter">0</div>
				</div>
				<div	id="orderDetails"></div>
</div>

.detail-header	{
				font-size:	20px;
				color:	white;
				margin-bottom:	20px;
				background-color:	black;
				padding:	10px;
}
#counter	{
				display:	inline-block;
}

Now	 in	 the	 typescript	 file,	 we	 need	 to	 create	 variables	 to
hold	 our	 order	 number	 and	 customer	 name.	 These	 will	 be
updated,	but	not	bound	directly	(they	could	be).
We	also	need	functions	that	are	bound	to	the	@Input	event
of	these	text	boxes.	Finally	we	need	functions	bound	to	our
add	buttons.

				orderNumber:	string	=	"";
				customerName:	string	=	"";
				@BindValueToNumber("counter",	"	items	in	cart")
				count:	number	=	0;
				@Input("orderNumber")
				onOrderNumberChange(e:	ValueEvent)	{
								this.orderNumber	=	e.value;
				}
				@Input("customerName")
				onCustomerNameChange(e:	ValueEvent)	{
								this.customerName	=	e.value;
				}
				@Click("addItemButton")
				onNewItemClick()	{
								//Add	the	item	here
				}
				@Click("addCommentButton")
				onNewCommentClick()	{
								//Add	the	comment	here
				}

Note	 we	 have	 not	 implemented	 onNewItemClick	 or
onNewCommentClick,	 but	 we	 have	 the	 methods
hooked	up	to	the	buttons	so	we	just	have	to	write	the
contents.

So	what	do	we	do	inside	the	click	handlers?	Assume	we	have
created	components	 for	one	 line	 item	or	one	 line	 comment
already	using	the	cli.	Then	we:

Create	the	correct	type	of	child	component	(info	or
comment)	and	store	it	somewhere	so	we	can	reference	it
later.

Add	it	to	our	orderDetails	div	so	they	show	up	in	order
created	where	we	want	them.

Increment	the	counter	if	it’s	an	item

Note:	Since	count	is	already	bound	to	the	counter	div,
all	we	have	to	do	 is	update	the	variable	to	update	the
counter	on	the	screen.

				items:	LineItemComponent[]	=	[];
				comments:	LineCommentComponent[]	=	[];
				@Click("addItemButton")
				onNewItemClick()	{
								const	item	=	new	LineItemComponent();
								this.items.push(item);
								this.addComponent(item,	"orderDetails");
								this.count++;
				}
				@Click("addCommentButton")
				onNewCommentClick()	{
								const	comment	=	new	LineCommentComponent();
								this.comments.push(comment);
								this.addComponent(comment,	"orderDetails");
				}

This	is	what	our	website	looks	like	when	we	run	it.	If	we	type
in	 the	 text	 boxes,	 our	 member	 variables	 are	 automatically
updated.	 If	 the	 count	 property	 of	 the	 class	 is	 changed,	 the
number	of	 items	 in	 the	cart	will	 change.	 If	we	click	on	our
buttons,	our	event	handlers	are	called.	Those	click	handlers
create	a	new	component	and	add	it	to	the	orderDetails	in	the
order	they	are	created.

This	is	what	our	website	looks	like	after	we	press	new	item
twice,	comment	twice,	then	new	item	a	third	time.	Since	the
click	handler	updated	count,	the	correct	count	is	displayed.
The	different	types	of	 line	 items	are	 interspersed.	They	are
displayed	 in	the	page	where	we	want	them	since	we	added
them	to	the	orderDetails	element.

Summary

We	 can	 create	 dynamic	 components	 by	 adding	 them	 to	 an
existing	 component	 using	 the	 addComponent(...) 	 method.
Adding	 components	 dynamically	 allows	 us	 to	 create
interactive	web	applications	and	reuse	components	(like	our
line	item	component)	over	and	over	again	as	appropriate.

10.2)	WebZ	Events
We	 can	 pass	 events	 between	 components	 so	 that	 our
components	can	communicate.

Component	heirarchy.
We	 can	 view	 the	 component	 hierarchy	 as	 a	 tree	 where
MainComponent	 is	 the	 root.	 Each	 time	 MainComponent
creates	 a	 new	 component,	 it	 is	 a	 child	 of	MainComponent.
Those	 children	 can	 themselves	 create	 and	 attach	 new
components.	 What	 we	 are	 left	 with	 is	 a	 heirarchy	 of
components	related	to	each	other	as	parent	and	child

Talking	to	our	children
Talking	 to	 our	 children	 is	 easy.	 We	 created	 them,	 so	 we
probably	 have	 (or	 at	 least	 we	 should	 have)	 a	 reference	 to
them.	 Through	 this	 reference	 we	 can	 modify	 public
properties	and	call	public	methods	on	the	child.	In	this	way
we	can	communicate	important	information	(that	something
has	 changed	 or	 some	 action	 is	 required)	 to	 the	 child.	 For
deeper	heirarchies,	we	can	have	each	parent	notify	its	child
down	 the	 heirarchy	 until	 the	 child	 we	 wish	 to	 notify	 is
reached.

Talking	to	our	parents
Unlike	communicating	with	children,	a	child	 likely	does	not
have	a	reference	to	the	parent	object.	This	means	we	need	a
mechanism	for	a	child	to	send	inforamtion	to	its	parent	that
some	event	has	occurred.

The	WebZ	Notifier
We	can	 create	 a	 public	Notifier	member	 on	 the	 child	 class
and	 subscribe	 to	 that	 event	 in	 the	parent	 class.	That	event
can	 then	be	 triggered	 in	 the	child	 to	notify	 the	parent	 that
something	has	changed.	The	contents	of	the	Notifier	can	be
anything	 we	 want	 from	 a	 value	 to	 a	 class	 to	 an	 array	 of
either.

We	 will	 talk	 about	 generics	 in	 detail	 later,	 but	 we	 need	 a
basic	understanding	in	order	to	use	Notifier.
Notifier	is	a	Generic	Class	in	that	we	can	change	the	internal
type	of	the	class	by	specifying	what	type	of	event	object	the
Notifier	emits.
First,	let’s	look	at	the	Notifier	class	that	we	will	be	using:

It	has	a	method	notify(data)	that	fires	the	event	(usually
called	in	the	child	component)

It	has	a	method	subscribe((data)=>void)	that	attaches	a
function	to	the	event	when	it	is	called.

What	type	of	object	is	data?	Because	Notifier	is	Generic	we
get	to	choose.

When	we	create	a	variable	of	type	Notifier	we	can	supply	a
type	parameter	to	tell	us	what	type	of	object	Notifier	emits.

				event:Notifier	=	new	Notifier();
				event2:Notifier<number>	=	new	Notifier<number>();
				event3:Notifier<string>	=	new	Notifier<string>();
				event4:Notifier<SomeClass>	=	new	Notifier<SomeClass>();
				event5:Notifier<string[]>	=	new	Notifier<string[]>();

The	first	line	creates	an	Notifier	that	does	not	emit	data,
just	a	notification.

The	second	line	creates	an	Notifier	that	emits	a	number.

The	third	line	creates	an	Notifier	that	emits	a	string.

The	fourth	line	creates	an	Notifier	that	emits	an	instance
of	a	custom	class

The	fifth	line	creates	an	Notifier	that	emits	an	array	of
strings.

The	 <>	 syntax	 is	 used	 to	 specify	 one	 or	 more	 type
parameters	 that	 alter	 the	 class	 internally	 to	 support	 that
type.

Now	we	can	pass	that	type	of	data	to	the	notify	method.

this.event.notify();
this.event2.notify(1);
this.event3.notify("hello");
this.event4.notify(new	SomeClass());
this.event5.notify(["hello","eventsubject","world"]);

The	type	parameter	specifies	the	type	expected	for	the
next	method.	Using	the	wrong	type	will	be	an	error.

Let’s	 look	 at	 the	 two	methods	 we	will	 be	 using	 (there	 are
others,	but	we	don’t	need	them	yet).

notify(data:T):void

We	call	notify	 to	ask	 the	Notifier	 to	emit	our	data	 (call	any
subscribed	methods).
We	pass	 it	 the	data	we	want	 to	 emit	which	must	be	 of	 the
type	specified	 in	 the	 type	parameter	we	used	 to	create	 the
property.
Calling	 this	 repeatedly	 will	 repeatedly	 call	 the	 subscribed
methods.	In	other	words,	the	subscriptions	last	until	they	are
unsubscribed.

subscribe((data:T)=>void,?(err:Error)=>void)

When	the	child	calls	 notify(...) ,	 the	method	passed	 in	 the
first	parameter	is	called.	When	the	 error(...) 	method	of	the
Notifier	 is	 called,	 the	 function	 in	 the	 second	 parameter	 is
called.	The	second	parameter	is	optional.

In	the	parent,	we	can	call	subscribe	to	attach	an	anonymous
function	 that	will	 run	each	 time	 the	 child	 calls	 notify(...)

and	 optionally,	 another	 to	 hand	 when	 the	 child	 calls
error(...) .

this.event2.subscribe(
				(value:	number)	=>	{
								console.log(value	+	1);
				},
				(err:	Error)	=>	{
								console.error(err);
				},
);

event2.next(4)	called	in	the	child	would	print	5	from	the
parent.

Event2.error(new	Error(“Bad	stuff”))	would	print	the
error	object	as	an	error	from	the	parent.

Note:	 This	 second	 parameter	 is	 optional	 if	 you	 don’t
want	error	notifications.

Let’s	 apply	 this	 to	 our	 LineCommentComponent	 from	 the
previous	seciton.	First	we	need	to	define	it:

<div	class="line-comment">
		Comment:	
		<input	id="comment"	type="text"	/>
</div>

.line-comment	{
				border-bottom:	1px	solid	black;
				padding:	10px;
}

export	 class	 LineCommentComponent	 extends
WebzCmponent	{
constructor()	{
super(html,	css);
}
@Input(“comment”)
onItemInputChange(e:	ValueEvent)	{
//emit	the	value	to	parent
}
}

Keeping	it	simple,	we	are	just	getting	the	input	event	
from	the	text	input	box	and	calling	a	method	
(onItemInputChange).

Now	we	can	add	our	Notifier	to	the	class	and	use	it	to	
notify	when	the	text	changes:

export	 class	 LineCommentComponent	 extends
WebzComponent	{
commentChange:	Notifier	=	new	Notifier();
constructor()	{
super(html,	css);
}
@Input(“comment”)
onItemInputChange(e:	ValueEvent)	{
this.commentChange.notify(e.value);
}
}

*	The	public	property	commentChange	is	of	type	Notify	and	
emits	a	string.
*	The	method	now	calls	next	with	the	new	value.

And	that’s	it,	our	child	class	now	emits	to	its	
subscriptions	whenever	the	user	types	and	this	will	happen	
for	each	line	comment	we	create.
We	would	do	something	similar	for	each	of	the	fields	in	a	
line	item.

Now	we	have	to	subscribe	to	the	event	in	the	parent.		We	
can	do	this	when	we	create	the	child	so	that	we	will	be	
notified	about	changes	to	each	comment.

@Click(“addCommentButton”)
onNewCommentClick()	{
const	comment	=	new	LineCommentComponent();
this.comments.push(comment);
this.addComponent(comment,	“orderDetails”);
comment.commentChange.subscribe((comment:string)	=>	{
console.log(comment);
});
//Add	the	comment	here
}

Since	we	never	threw	an	error,	we	did	not	bother	with	a	
method	to	handle	the	error.		Now	each	time	the	user	types	
in	any	of	the	input	boxes	for	comments,	the	value	will	be	
logged	by	the	parent.		Of	course	so	far,	we	are	just	
looging	the	comment.		Let's	create	an	array	and	counter	to	
store	the	comments	and	update	them	when	they	change.

private	commentText:string[]=[];
private	commentCount:number=0;

@Click(“addCommentButton”)
onNewCommentClick()	{
const	comment	=	new	LineCommentComponent();
this.comments.push(comment);
this.commentText.push(“”);
this.addComponent(comment,	“orderDetails”);
let	index	=	this.commentCount++;
comment.commentChange.subscribe((comment:	 string)	 =>
{
this.commentText[index]	=	comment;
console.log(this.commentText);
});
}

Now	we	can	push	a	new	empty	string	onto	our	new	array	when	
we	create	the	comment	and	update	it	in	our	subscribe	

callback.
Now	at	any	point,	commentText	in	the	parent	contains	the	
current	value	of	all	the	comment	children.

We	could	do	something	similar	for	our	line	items	and	store	
them	in	an	array	itemList.
If	we	added	a	save	button	in	the	parent,	we	would	have	the	
commentText	and	itemList	which	we	could	save	in	any	way	we	
want.
As	we	type	in	the	child	component,	it	catches	the	Input	
event	and	emits	the	current	value	through	the	Notifier	of	
each	line	item.
Each	time	the	Notifier	emits	a	value,	we	update	the	
appropriate	element	in	our	value	array.
Now	we	don’t	even	need	to	think	about	what	is	going	on	in	
the	child	in	order	to	get	the	values	from	them.
We	could	do	this	by	querying	each	child	component	for	its	
value	when	we	need	it,	but	this	is	a	much	nicer	solution	
and	gives	us	real	time	updates	in	the	parent	class.

##	Summary
Passing	information	between	components	is	critical	to	
developing	web	applications.		Passing	information	is	simple	
from	parent	to	child	because	the	parent	created	the	child	
and	thus	has	a	reference	to	it.		Passing	information	from	
child	to	parent	can	be	accomplished	in	WebZ	using	the	
notifier	class.		A	child	calls	the	```notify(...)```	
method,	and	the	parent	can	subscribe	to	that	Notifier.

<div	style="page-break-before:	always;"></div>

#	10.3)	WebZ	Dialogs

Popup	windows	and	dialog	boxes	can	be	challenging	in	web	
development.		WebZ	provides	an	easy	mechanism	for	creating	
them.

##	Overview
Sometimes	we	want	to	create	an	overlay	window	that	sits	on	
top	of	our	page,	prevents	us	from	clicking	elsewhere	on	our	
page,	and	has	its	own	content	and	behaviors.
WebEz	provides	two	methods	for	doing	this:
*	Popup:	Creates	a	popup	window	with	a	title,	some	text,	
and	buttons	that	returns	the	text	on	the	button	through	a	
Notifier.
*	Dialog:	Creates	a	popup	window	whose	content	is	
determined	by	a	component.		These	can	be	created	with	the	
cli	(webz	dialog	my-dialog).

##	Popups
The	popup	window	is	provided	as	an	easy	way	to	interact	
with	your	user	for	a	quick	message	or	question.		This	is	
similar	to	the	javascript	alert/confirm	methods,	but	looks	
a	lot	better	and	is	more	flexible.		To	show	a	popup	we	
simply	call	the	popup	method	of	the	WebzDialog	class.		This	
is	a	static	method	(means	it	does	not	exist	on	an	instance	
of	WebzDialog	but	rather	can	be	called	directly	on	the	
type).

EzDialog.popup(attachTo:	 EzComponent,	 message:	 string,
title?:	string,	buttons?:	string[],	btnClass?:	string):Notifier

We	can	call	this	method	to	show	a	dialog	box:

WebzDialog.popup(this,"Hello	 World","I	 am	 the	 title",
[“Yes","No”],"btnClass");

Popup	returns	a	Notifier<string>	which	emits	the	text	of	
the	button	pressed.
We	can	subscribe	to	the	returned	value	to	be	notified	when	
the	popup	closed.

Let’s	examine	this	in	detail:
*	attachTo	(required):	is	the	component	that	you	want	to	
attach	the	element	to.		Usually	you	will	pass	in	this	to	
specify	the	current	component.
*	Message	(required):	The	text	inside	the	popup
*	Title	(optional):	The	title	for	your	popup,	displayed	at	
the	top.
*	buttons	(optional):	An	array	of	strings	that	are	the	
labels	of	the	buttons	that	you	want	to	display.		By	default	
there	is	a	single	OK	button.
*	btnClass(optional):	An	optional	css	class	string	to	style	
the	buttons.		This	allows	you	to	optionally	attach	a	css	
class	to	the	button	for	styling.
*	Returns:	An	event	subject	that	emits	the	label	of	the	
pressed	button.		
Pressing	a	button,	closes	the	popup.

Back	to	our	point	of	sale	example,	we	can	use	a	popup	to	
notify	the	user	that	a	comment	was	added.

@Click(“addCommentButton”)
onNewCommentClick()	{
const	comment	=	new	LineCommentComponent();
this.comments.push(comment);

this.commentText.push(“”);
this.addComponent(comment,	“orderDetails”);
let	index	=	this.commentCount++;
comment.commentChange.subscribe((comment:	 string)	 =>
{
this.commentText[index]	=	comment;
console.log(this.commentText);
});
WebzDialog.popup(this,"Item	added.")
}

Here	we	have	added	a	popup	with	the	default	title	“Alert”	
and	the	default	buttons	[“Ok”].
We	have	not	subscribed	since	I	do	not	need	notification	of	
when	the	window	closes,	and	there	is	only	one	button	the	
user	could	have	clicked.
We	could	have	subscribed	if	I	needed	to	know	that	the	popup	
was	closed.

![]
(/home/runner/work/textbook/textbook/source/assets/images/w
ebz_6.jpg)

Notice	how	the	popup	greys	out	the	underlying	website.		You	
cannot	click	buttons	or	enter	text	while	the	popup	is	open.
Once	it	is	closed,	the	gray	background	goes	away	and	the	
rest	of	the	page	will	again	accept	input.	
With	this	screen,	the	only	thing	I	can	do	is	click	ok.

Let's	look	at	a	more	complex	example:

@Click("addCommentButton")
onNewCommentClick()	{
				WebzDialog.popup(this,	"Are	you	sure?",	"Add	new	item",
["Yes","No"],
).subscribe((result:	string)	=>	{
								if	(result	==	"Yes")	{
												const	comment	=	new	LineCommentComponent();
												this.comments.push(comment);
												this.commentText.push("");
												this.addComponent(comment,	"orderDetails");
												let	index	=	this.commentCount++;
												comment.commentChange.subscribe((comment:	
string)	=>	{
																this.commentText[index]	=	comment;
																console.log(this.commentText);
												});
								}
				});
}

Here	we	have	added	a	popup	to	ask	the	user	if	they	are	sure	
before	adding	the	item,	and	then	only	adding	it	if	they	
click	the	“Yes”	button.
We	subscribe	to	the	EventSubject	returned	by	the	popup	
method	to	see	when	the	window	closes	and	which	button	was	
pressed.

>	Note:	We	moved	all	of	the	code	inside	the	anonymous	
function	so	that	it	will	only	be	called	after	the	dialog	is	
closed.

![]

(/home/runner/work/textbook/textbook/source/assets/images/w
ebz_7.jpg)

##	Dialogs

Dialogs	work	similarly,	except	they	do	not	have	a	pre-
defined	structure.		You	can	create	them	as	a	component	
where	you	control	the	layout	and	any	Notifiers	you	want	to	
implement.
Creating	a	new	dialog	is	as	simple	as:	```webz	dialog	
myDialog```

Like	webz	component,	this	creates	a	new	component,	but	it	
will	behave	and	look	like	a	popup	window,	only	its	content	
will	be	your	new	component.
The	default	implementation	is	a	simple	popup	with	an	ok	
button	that	closes	when	the	user	clicks	it.		We	can	close	a	
window	by	calling	the	member	method	this.show(true/false).
We	add	it	just	like	any	other	component	using	addComponent,	
then	display	it	by	calling	show(true).

dialog:	MyDialog	=	new	MyDialog();
constructor()	{
super(html,	css);
this.addComponent(this.dialog);
}
showDialog(){
this.dialog.show(true);
}

hideDialog(){
this.dialog.show(false);
}

First	we	create	a	variable	to	hold	our	dialog:
We	can	then	add	it	to	the	component:

>	Note,	if	you	want	it	to	display	immediately,	then	you	can	
call	show	with	true	```this.dialog.show(true);```

Whenever	we	want	to	show	the	dialog,	we	just	pass	true	to	
it’s	show	method.		To	hide	it	we	pass	false.

If	we	want	to	get	an	event	to	subscribe	to	when	the	window	
is	closed,	or	something	happens	in	the	dialog,	we	can	
implement	our	own	Notifiers	and	subscribe	to	them	in	the	
parent.

###	An	Example
A	simple	please	wait	dialog	with	no	buttons.
To	make	this	simple,	I	am	just	going	to	use	text,	but	you	
could	use	an	animated	gif	or	do	some	css	magic	to	add	some	
movement	to	this	dialog	(we	will	do	that	in	a	few	minutes	
with	a	timer).
First	we	will	create	a	new	dialog	with	the	cli:	```webz	
dialog	Pleasewait```

For	the	body	of	our	dialog,	we	will	just	center	a	string	
that	says	“Please	Wait…”
```html
<div	class="content">
				<div	class="body">Please	Wait...</div>
</div>



.content	{
				width:	600px;
}
.body	{
				text-align:	center;
				font-size:	40px;
				line-height:	100px;
}

In	the	parent,	we	create	a	property	for	our	dialog	and	add	it
to	the	component.

plsWait:	PleaseWaitDialog	=	new	PleaseWaitDialog();

constructor(){
				this.addComponent(this.plsWait);
}

When	 we	 want	 the	 dialog	 we	 can	 simply	 display	 it	 while
some	time	consuming	task	is	occurring,	then	hide	it	after.

this.plsWait.show(true);
//do	something	that	takes	a	while
this.plsWait.show(false);



Here	 you	 can	 see	 the	 output	 after	 a	 call	 to
plsWait.show(true).
Just	like	the	popup,	the	rest	of	the	website	is	grayed	out	and
cannot	be	interacted	with.

Summary
Creating	 a	 good	 user	 interface	 is	 critical	 to	 having	 your
software	 accepted	 by	 users.	 Dialogs	 and	 popups	 are	 an
excellent	 mechanism	 for	 communicating	 and	 querying
simple	 information	 from	 the	 user.	 WebZ	 provides	 a	 simple
popup	method	for	simple	interactions,	and	a	dialog	class	to
derive	from	for	creating	custom	layouts.



10.4)	WebZ	Timers
We	 can	 cause	 things	 to	 happen	 periodically	 by	 using	 a
timer.	Timers	allow	us	to	schedule	actions	to	occur	once	per
time	interval.

Overview



Sometimes	we	want	 to	do	something	periodically	while	our
site	is	displayed

Update	a	timer

Refresh	data	from	a	backend

Move	a	game	element



Animation

Anything	else	we	want	to	accomplish	on	an	interval.

This	can	be	useful	to	provide	more	interactivity	to	your	site.

Using	Timers
Returning	 to	 our	 PleaseWait	 dialog,	we	 can	 use	 a	 timer	 to
make	it	more	interesting.
First,	we	will	bind	a	variable	to	the	text	we	are	displaying:

@BindValue(“displayDots")
displayDots:	string	=	"";

We	 will	 modify	 the	 html	 and	 add	 a	 div	 with	 the	 id
displayDots.

<div	class="content">
				<div	class="body">
								Please	Wait
								<div	id="displayDots"></div>
				</div>
</div>

And	style	it	so	that	it	has	a	fixed	width	and	will	appear	inline
after	the	words	Please	Wait.



#displayDots	{
				width:	50px;
				display:	inline-block;
				text-align:	left;
}

The	plan	is	to	change	displayDots	to	contain	1,	2,	or	3	dots
and	change	it	once	a	second.

To	 implement	 the	 behavior,	 we	 will	 use	 the	 @Timer
decorator	 to	 decorate	 a	 function	 hat	 we	 want	 called
periodically.
Passing	 1000	 to	 the	 timer	 method	 causes	 onTimer	 to	 be
called	 once	 a	 second	 while	 the	 page	 is	 displayed	 (forever:
more	on	this	later).	1	second=	1000	milliseconds
Each	 time	 it	 is	 called,	 we	 check	 a	 counter	 that	 will	 keep
track	of	how	many	dots	are	displayed.	When	we	get	to	3,	we
set	 it	back	to	0.	Otherwise,	we	draw	the	correct	number	of
dots	(count+1	because	count	goes	from	0-2)	by	updating	our
displayDots	property	which	is	bound	to	the	page.

@Timer(1000)
private	onTimer()	{
				if	(this.count	===	3)	this.count	=	0;
				this.displayDots	=	".".repeat(this.count	+	1);
								this.count	=	this.count	+	1;
				}



Summary
We	 can	 use	 a	 timer	 to	 cause	 a	 function	 to	 be	 called
periodically.	 The	 @Timer	 directive	 takes	 the	 number	 of
milliseconds	between	calls,	and	runs	until	the	page	exits.



11)	Advanced	Typescript



11.1)	Typescript	Generics
Generics	 allow	 for	 creation	 of	 reusable	 code	 that	 where
internal	types	can	be	specified	externally.

Generics	in	Typescript
In	 the	 last	 chapter	 we	 discussed	 the	 WebZ	Notifier	 class.
This	 class	 was	 a	 generic	 class	 that	 we	 could	 pass	 type
parameters	to	during	creation.

				event:Notifier	=	new	Notifier();
				event2:Notifier<number>	=	new	Notifier<number>();
				event3:Notifier<string>	=	new	Notifier<string>();
				event4:Notifier<SomeClass>	=	new	Notifier<SomeClass>();
				event5:Notifier<string[]>	=	new	Notifier<string[]>();

This	 is	 a	 single	 class	 definition	 that	 works	 on	 any	 type	 of
data.	 We	 can	 make	 our	 own	 generic	 functions,	 classes,
interfaces,	or	type	aliases	by	creating	them	with	one	or	more
type	 parameters	 that	 can	 be	 specified	 by	 the	 caller.
Overall,	this	allows	us	to	create	reusable	code	that	works	on
various	types	of	data.

Motivation



Consider	the	following	simple	method.

function	printNumberResult(result:number){
				console.log('Result:	'	+	result);
}
printNumberResult(5);

This	method	prints	Result:	5	when	called	with	a	parameter
of	5.	What	 if	we	wanted	 to	 allow	other	 types	 of	 data	 to	be
printed?	One	solution	would	be	to	write	another	function.

function	printStringResult(result:string){
				console.log('Result:	'	+	result);
}
printStringResult("Hello	World");

While	 we	 could	 write	 different	 functions	 for	 each	 type	 we
wish	to	support,	it	would	be	better	if	we	could	right	a	single
method	for	all	of	them.	Let’s	examine	this	code	further:

Generic	Functions
We	 know	 console.log(...) 	 will	 print	 anything,	 so	 the	 only
issue	 here	 is	 that	 our	 method	 expects	 a	 number.	 We	 can
make	this	 function	a	generic	by	adding	a	type	parameter
and	using	it	as	the	type	of	the	result	parameter.



function	printResult<T>(result:T){
				console.log('Result:	'	+	result);
}
printResult<number>(5);
printResult<string>("Hello	World");

Here	we	have	added	a	type	parameter	(T),	and	we	use	that
paramter	 to	 set	 type	 type	 of	 the	 function’s	 parameter
(result).	When	we	call	our	function,	we	can	specify	the	type
of	the	data	when	we	call	it.

It	 turns	 out	 that	 typescript	 can	 infer	 the	 type	 from	 the
parameter,	so	we	can	leave	it	out	when	we	call	the	function
(However	it	is	not	incorrect	to	include	it).

function	printResult<T>(result:T){
				console.log('Result:	'	+	result);
}
printResult(5);
printResult("Hello	World");

We	 are	 not	 limited	 to	 a	 single	 type	 parameter.	 If	 we	 need
more	than	one,	we	can	specify	multiple	type	parameters.



function	makePair<T,S>(x:T,y:S):[T,S]{
				return	[x,y];
}
const	result=makePair<number,string>(1,"hello");
console.log(result);

The	important	point	here	is	that	the	type	checking	occurs	at
compile	 time	(not	at	run	time).	 If	we	call	 it	with	 the	wrong
arguments…

function	makePair<T,S>(x:T,y:S):[T,S]{
				return	[x,y];
}
const	result=makePair<number,string>("hello“,1);
console.log(result);

…	you	will	 get	 compiler	 errors.	 Try	 it	 and	 you	will	 see	 the
errors	in	the	console.

It	 is	 much	 easier	 to	 fix	 compiler	 errors	 where	 the
compiler	gives	us	a	line	number	and	description	then	it
is	 to	 fix	 run	 time	 errors	 where	 the	 program	 either
crashes,	or	just	gives	the	wrong	answer.

Controlling	types



We	 can	 limit	 the	 types	 that	 are	 acceptable	 as	 a	 type
parameter	 by	 using	 the	 extends	 keyword.	 In	 this	 example,
the	 first	 parameter	must	 be	 a	 string	 or	 a	 number,	 but	 the
second	parameter	can	be	any	type.

function	makePair<T	extends	string|number,S>(x:T,y:S):
[T,S]{
				return	[x,y];
}
console.log(makePair(4,["Hello"]));

Note:	 string|number	 is	 referred	 to	 as	 a	Union	 Type
which	we	will	 talk	more	 about	 later,	 but	 basically	we
can	combine	types	with	a	|	and	then	either	type	would
be	acceptable.

If	we	use	extends	with	a	class	type,	we	could	use	elements	of
that	class	or	any	class	 that	derives	 from	the	class	specified
in	the	type	paramter’s	extends	clause.



class	Shoe{
				constructor(public	size:number){}
}
class	Sneaker	extends	Shoe{
				constructor(size:number,private	sport:string){
								super(size);
				}
}
class	Boot	extends	Shoe{
				constructor(size:number,private	height:number){
								super(size);
				}
}
function	getShowSize<T	extends	Shoe>(shoe:T):number{
				return	shoe.size;
}
console.log(getShowSize(new	Boot(10,14)));

Note:	We	 could	 do	 this	without	 a	 generic	 if	we	made
the	parameter	type	Shoe	as	it	would	accept	the	derived
classes.	In	this	case	either	method	is	ok,	but	there	are
places	where	a	generic	is	a	better	solution.

Generic	Classes
Just	 like	 functions,	we	can	use	generics	 for	classes	as	well.
Let’s	consider	a	class	for	a	list	of	numbers:



class	ItemList{
				public	items:number[]=[];
				constructor(){}
				addItem(item:number):void{
								this.items.push(item);
				}
}
const	list:ItemList=new	ItemList();
list.addItem(4);
console.log(list);

What	if	we	wanted	to	extend	this	so	it	worked	on	a	list	of	any
type,	even	a	list	of	lists.
We	could	use	a	generic	definition	to	make	ItemList	work	on
any	type,	and	not	just	on	numbers
As	always	we	can	limit	the	acceptable	types	using	the	extend
keyword.



class	ItemList<T>{
				public	items:T[]=[];
				constructor(){}
				addItem(item:T):void{
								this.items.push(item);
				}
}
const	list:ItemList<number>=new	ItemList<number>();
list.addItem(4);
const	list2:ItemList<string>=new	ItemList<string>();
list2.addItem("hello");
const	list3:ItemList<string[]>=new	ItemList<string[]>();
list3.addItem(["Hello","World"]);
console.log(list);
console.log(list2);
console.log(list3);

Note:	 T	 is	 defined	 on	 the	 class,	 and	 we	 can	 use	 it
within	the	class	as	the	type	of	any	method	parameter,
return	value,	or	member	variable.

We	can	create	a	homogeneous	list	of	anything	by	specifying
the	type	of	object	the	list	contains	with	a	type	parameter.
Now	we	have	created	a	class	that	works	on	any	data,	instead
of	just	on	numbers.
We	can	even	add	additional	type	parameters	to	the	methods
within	our	class	to	make	them	more	reusable.



Default	Types
Finally,	 we	 can	 provide	 a	 default	 value	 for	 our	 generic	 to
describe	how	it	behaves	if	no	type	parameter	is	provided:

class	ItemList<T=number>{
				public	items:T[]=[];
				constructor(){}
				addItem(item:T):void{
								this.items.push(item);
				}
}
const	list:ItemList=new	ItemList();
list.addItem(4);
const	list2:ItemList<string>=new	ItemList<string>();
list2.addItem("hello");
const	list3:ItemList<string[]>=new	ItemList<string[]>();
list3.addItem(["Hello","World"]);
console.log(list,list2,list3);

If	a	parameter	is	provided,	the	default	is	ignored.
If	 no	 parameter	 is	 provided,	 then	 the​type	 must	 match	 the
default	 if	 we	 use	 the	 class	 (i.e.	 we	 must	 pass	 a	 number,
anything	else	will	cause	a	type	error	at	compile	time).

Inside	the	WebZ	Notifier	class
Let’s	return	to	the	WebZ	Notifier	class	and	loot	at	the	source
code	for	it.



export	class	Notifier<T	=	void>	{
				constructor()	{}
				subscribe(callback:	(value:	T)	=>	void,	error?:	(value:	
Error)	=>	void)	{
								//something	goes	here
				}
				unsubscribe(id:	number)	{
								//something	goes	here
				}
				notify(value:	T)	{
								//something	goes	here
				}
				error(value:	Error)	{
								//something	goes	here
				}
}

*T	defaults	to	void	if	no	parameter	is	provided.

subscribe	takes	a	function	whose	parameter	has	type	T.

notify	takes	a	value	of	type	T

This	is	as	expected	when	you	consider	how	we	used	Notifier
previously.

With	no	type	argument	its	data	is	void	(nothing)

With	a	type	parameter,	the	type	it	works	with	is	the	value
specified	for	T.



Summary
Using	 generics,	 we	 can	 create	 more	 reusable	 code	 by
allowing	our	code	 to	work	on	many	different	 types	of	data.
We	can	apply	this	techinque	to	classes	and	methods	so	that
our	code	works	on	various	types	of	data.



11.2)	Typescript	Interfaces
An	interface	 is	a	contract	 that	describes	the	shape	of	data
without	values	or	implementation.

Interfaces	in	Typescript
Sometimes	we	want	to	describe	the	shape	of	our	data.
Sometimes	we	want	to	describe	the	methods	and	values	that
a	class	contains	without	detailing	the	entire	class.
We	can	only	extend	one	class,	but	we	can	 implement	many
interfaces.



We	 say	 that	 it	 is	 a	 contract,	 because	 the	 object	 must
implement	 the	 things	 in	 the	 interface,	 and	 users	 of	 the
object	are	guaranteed	that	those	things	are	implemented.

Interfaces	can	contain	property	or	method	signatures
but	not	implementations.

A	simple	example



Suppose	we	are	building	a	drawing	program	and	want	to	be
able	 to	pass	around	point	 structures	{x:number,y:number}.
We	 can	 declare	 this	 as	 an	 interface	 then	 use	 the	 interface
name	as	a	type.

export	interface	Point{
				x:number;
				y:number;
}
let	point:Point={x:1,y:2};
let	point2:Point={x:2,y:3,z:4};		//this	is	an	error
let	point3:Point={x:3};		//this	is	an	error

Note	this	will	give	an	error	because	point2	and	point3
don’t	conform	to	the	interface.

We	 can’t	 create	 a	 point	 (with	 new)	 like	 a	 class,	 but	 the
compiler	 will	 guarantee	 that	 the	 object	 contains	 the
members	 of	 the	 interface	 and	 only	 the	 members	 of	 the
interface.

We	 say	 that	 a	 class	 implements	 an	 interface	 if	 it	 contains
all	 of	 the	 members	 of	 the	 interface	 (not	 necessarily	 only
those	 members).	 Using	 the	 implements	 keyword
guarantees	this.



interface	Point{
				x:number;
				y:number;
}
class	DrawPoint	implements	Point{
				x:number;
				y:number;
				constructor(x:number,	y:number,	private	color:string){
								this.x=x;
								this.y=y;
				}
}
const	point:Point=new	DrawPoint(4,5,"red");

Now	 I	 can	 refer	 to	 the	 DrawPoint	 object	 as	 a	 Point	 and	 I
know	 it	 contains	 an	 x	 and	 a	 y	 without	 having	 to	 know
anything	else	about	DrawPoint.

We	 are	 guaranteed	 that	 DrawPoint	 contains	 an	 x	 and	 a	 y
member,	because	it	implements	point.	If	it	doesn’t,	the	code
won’t	compile.

Interface	methods
Interfaces	 can	contain	methods	as	well.	They	don’t	 include
the	implementation,	they	are	just	stating	that	the	class	must
contain	 that	 method	 in	 order	 to	 compile,	 so	 users	 of	 the
class	know	it	contains	that	method.



interface	Drawable{
				points:	Point[];
				draw():void;
}
class	Triangle	implements	Drawable{
				points:Point[];
				constructor(p1:Point,p2:Point,p3:Point){
								this.points=[p1,p2,p3];
				}
				draw(){
								//draw	triangle
				}
}

Here	 we	 can	 see	 that	 Triangle	 contains	 an	 array	 of	 Point
objects,	 and	 a	 draw	 method,	 therefore	 it	 correctly
implements	the	Drawable	interface.
If	 a	 class	 implements	 an	 interface,	 then	 the	 class	 can	 be
referenced	 as	 an	 object	 of	 interface	 type	 and	 will	 always
have	 the	 points	 array	 and	 draw	 method	 or	 it	 would	 not
compile.

Multiple	Interfaces
A	class	cannot	extend	more	than	one	class	in	typescript,	but
it	can	implement	many	interfaces.



interface	Serializable{
				serialize():string;
}
interface	Iterable<T>{
				next():T;
}
class	MyList	implements	Serializable,Iterable<number>{
				values:number[]=[];
				pos:number=0;
				next():number{
								if	(this.pos<this.values.length)
												return	this.values[this.pos++];
								else
												return	-1;
				}
				serialize():string{
								return	JSON.stringify(this.values);
				}
}

Here	 we	 have	 a	 class	 that	 implements	 two	 interfaces.	 We
can	see	that	it	provides	the	implementation	that	matches	the
signatures	in	all	of	the	interface.

Now	I	can	use	it	to	write	a	function:



function	serializeAll(obj:Serializable[]){
				let	result:string[]=[];
				for	(let	o	of	obj){
								result.push(o.serialize());
				}
				return	result;
}
const	obj:MyList[]=[new	MyList()];
console.log(serializeAll(obj));

Using	Interfaces
Interfaces	have	many	uses,	primarily:

Describe	the	shape	of	data	to	guarantee	that	the	data	is
in	the	right	form.

interface	Point{x:number;y:number;}

Describe	certain	features	that	we	want	to	enforce	when
we	create	a	class	so	that	if	we	know	the	class	implements
the	interface,	we	know	that	the	interface	members
actually	exist	in	the	class	and	are	implemented	for	us.

interface	Drawable{points:	Point[];draw():void;}
class	Triangle	implements	Drawable{	.	.	.	}



Using	interfaces	we	can	simplify	coding	by	having
multiple	(very	different)	classes	that	all	implement	the
interface,	then	we	can	call	the	interface	methods	on	the
objects	even	though	they	are	otherwise

class	Elephant	implements	Serializable{	.	.	.	}
class	Tomato	implements	Serializable{	.	.	.	}

Notes	on	Interfaces
Interfaces	allow	us	to	further	type	our	data	by	specifying
what	methods	and	properties	an	object	must	contain.

Unlike	extending	classes	(inheritance),	we	can	implement
multiple	interfaces	in	a	single	class.

If	a	class	implements	an	interface,	then	that	class	can	be
stored	in	a	variable	whose	type	is	the	interface,	and	we
can	access	the	interfaces	members	through	that	variable.

Interfaces	can	be	very	useful	to	describe	typescript
objects	that	are	otherwise	untyped	(like	complex	data
returned	from	an	API	call).	Once	described,	the	interface
will	enforce	that	the	object	is	indeed	the	correct	shape
and	contains	all	of	the	interface	members	(methods	and
properties).

Interfaces	are	common	in	most	Object	Oriented
programming	languages	and	provide	a	convenient	means



to	strengthen	typing	within	our	code.

Summary
Interfaces	 provide	 another	 powerful	 mechanism	 for
creating	type	safe	reusable	code.	By	specifying	the	contract
that	a	class	or	method	must	adhere	to,	users	of	the	class	or
type	 can	 be	 assured	 that	 the	 type	 contains	 the	 members
specified	in	the	interface.	In	this	way,	disperate	objects	can
be	 used	 as	 if	 they	 are	 the	 same	 object	 so	 long	 as	 they
implement	a	given	interface.



11.3)	Union	Types
Union	types	are	a	way	of	declaring	a	variable	that	can	hold
values	of	two	or	more	different	types.

Combining	types	in	Typescript
We	know	we	can	declare	new	types	in	typescript	by	creating
classes	 and	 interfaces,	 and	 we	 can	 use	 these	 types	 in	 our
programs.
What	if	we	don’t	know	the	type,	but	we	know	that	it	one	of	a
finite	number	of	types:

It	could	be	a	number	or	a	string

It	could	be	a	class	instance	or	null

We	can	combine	types	into	a	new	either/or	type	by	creating
a	union	type.
When	a	variable	is	declared	as	a	union	type,	it	can	take	on
either	 type	 of	 value,	 but	 the	 value	 must	 be	 one	 of	 those
types.

Imagine	we	want	to	create	a	function	that	pads	a	string	on
the	left.

We	might	want	it	to	take	a	string	to	prepend



function	padString(value:string,padding:string){
				return	padding+value;
}

We	 might	 want	 it	 to	 take	 a	 number	 and	 add	 that	 many
spaces	to	the	front

function	padString2(value:string,padding:number){
				return	Array(padding	+	1).join("	")	+	value;
}

It	 would	 be	 great	 if	 we	 could	 combine	 these	 into	 one
function,	but	not	allow	invalid	types.

We	 can	 use	 a	union	type	 to	 combine	 the	 signatures	 Then
check	the	type	of	padding	and	act	accordingly:

function	padString(value:string,padding:string|number){
				if(typeof	padding	===	"number"){
								return	Array(padding	+	1).join("	")	+	value;
				}
				return	padding+value;
}
console.log("Answer:	"+padString("World",6));
console.log("Answer:	"+padString("World","Hello	"));

We	can	apply	this	to	other	types	as	well.	Classes,	interfaces,
etc.



Union	types	with	classes
Consider	these	classes:

class	Tiger{
				name:string="Tony";
				getDetails():string{
								return	this.name	+	"	is	a	tiger";
				}
				eat(){
								console.log("Yum");
				}
}
​class	Tree{
				name:string="Kevin";
				height:number=100;
				getDetails():string{
								return	this.name	+	"	is	"	+	this.height	+	"	feet	
tall";
				}
}

let	whatisit:Tree|Tiger;
whatisit=new	Tree();
console.log(whatisit.name);
console.log(whatisit.getDetails());

We	 can	 unino	 these	 classes	 together	 and	 through	 the
variable	whatisit,	we	can	access	any	members	that	both	Tree
and	Tiger	share	in	common.



We	 cannot	 access	 members	 that	 are	 not	 shared	 in
common	 through	 the	 variable	 because	 its	 type	 only
supports	members	that	are	in	both.

Type	Aliases
We	can	create	a	Type	Alias	to	combine	types,	then	use	our
type	alias	in	our	programs	to	represent	the	union	type.



class	Tiger{
				name:string="Tony";
				getDetails():string{
								return	this.name	+	"	is	a	tiger";
				}
				eat(){
								console.log("Yum");
				}
}
​class	Tree{
				name:string="Kevin";
				height:number=100;
				getDetails():string{
								return	this.name	+	"	is	"	+	this.height	+	"	feet	
tall";
				}
}
declare	type	ThingsThatStartWithT=Tree|Tiger;
let	whatisit:ThingsThatStartWithT;
whatisit=new	Tree();
console.log(whatisit.name);

The	declared	type	ThingsThatStartWithT	can	be	used	like
any	 other	 type,	 but	 it	 represents	 the	 union	 type	 of
combining	Tiger	and	Tree.

Summary



A	simple	way	to	combine	the	functionality	of	multiple	types
is	 a	 Union	 Type.	 Union	 Types	 represent	 an	 either/or
relationship.	Variables	defined	as	a	union	type	 can	be	any
of	 the	 types	 in	 the	 statement	 and	 get	 any	 properties	 or
methods	 that	 are	 shared	 between	 all	 of	 the	 types	 in	 the
statement.



12)	Higher	Order	Methods



12.1)	Higher	Order	Array
Methods
A	 higher	 order	 function	 is	 a	 function	 that	 takes	 as	 an
argument	and/or	returns	a	function.

Higher	Order	Methods	in
General
The	 term	 Higher	 Order	 Method	 simply	 refers	 to	 any
method	 which	 takes	 a	 function	 as	 an	 argument,	 returns	 a
function,	or	both.
This	 is	nothing	new	for	us.	We	have	seen	this	before	 in	the
describe	and	test	methods	we	use	in	our	jest	test	code.

describe("MainComponent",	()	=>	{
				describe("Constructor",	()	=>	{
								test("Create	Instance",	()	=>	{
								});
				});
});

We	also	saw	this	in	the	WebZ	library	with	the	Notifier	class’
subscribe	method:



child.elementAdded.subscribe(
				(value:boolean)	=>	{console.log(value);
});

In	Typescript,	when	passing	a	function	as	an	argument,	it	is
often	convenient	to	use	an	anonymous	function	which	we
have	talked	about	already.	You	can	always	spot	this	because
it	will	have	the	=>	operator.

Since	functions	in	typescript	are	first	order	objects,	we	can
use	them	as	parameters	and	return	values.
We	 can	 specify	 the	 shape	 or	 signature	 of	 the	 expected
parameter	or	return	type	when	we	declare	the	method.

subscribe(callback:	(value:	T)	=>	void,	error?:	(value:	
Error)	=>	void):number

In	 this	 signature	 for	 the	 subscribe	 method,	 the	 parameter
named	 callback	 is	 of	 type	 (value:	 T)	 =>	 void	 and	 the
parameter	 named	 error	 is	 of	 type	 (value:Error)=>void
where	T	is	a	type	parameter	used	when	creating	an	instance
of	 the	 class	 and	 Error	 is	 the	 error	 type	 provided	 by
Typescript.

This	 language	 feature	 of	 typescript	 (and	 many	 other
languages	where	 functions	 are	 first	order	objects)	 allows
for	 some	 useful	 and	 interesting	 ways	 to	 write	 code	 and



typescript	 (javascript)	 provides	 some	built-in	 functions	 that
take	advantage	of	this.

Use	 of	 these	 built-in	methods	will	make	 your	 code	 shorter,
simpler	 and	more	 readable.	 There	 is	 nothing	 these	 can	 do
that	we	could	not	write	in	some	other	way,	but	they	simplify
things	 considerably.	We	 will	 examine	 several	 methods	 that
can	 be	 applied	 to	 arrays	 including	 map,	 filter,	 reduce,
reduceRight,	 every,	 some,	 find,	 findIndex,	 findLastIndex,
flatMap,	forEach,	and	sort,

Higher	Order	Array	Methods

The	forEach	Method
The	 simplest	 and	most	 straight	 forward	higher	 order	 array
method	 is	 forEach	 which	 takes	 a	 function	 as	 its	 only
argument	 and	 executes	 that	 function	 on	 each	 argument	 in
the	 list.	 If	we	wanted	 to	 do	 this	without	 using	 the	 forEach
method,	we	could	certainly	do	it	with	a	simple	for	loop:

const	arr:string[]	=	['a',	'b',	'c'];
for	(let	value	of	arr)	{console.log(value)}



We	 can	 use	 our	 new	 higher	 order	 forEach	 method	 to
accomplish	the	same	thing.	Notice	that	the	only	difference	is
that	 we	 are	 passing	 a	 simple	 method	 to	 the	 forEach
function	which	accomplishes	whatever	we	want	to	do	in	the
loop	 body	 by	 calling	 that	 function	 on	 each	 element	 of	 the
array.

const	arr:string[]	=	["a",	"b",	"c"];
arr.forEach((value)	=>	{console.log(value)})

If	we	want	to	call	a	member	function	instead,	we	can	simply
call	it	in	the	body	of	the	anonymous	function.

const	arr:string[]	=	['a',	'b',	'c'];
arr.forEach((value)	=>	{this.doWork(value)})

This	does	not	mutate	the	array	in	any	way.

The	every	and	some	methods
The	every	and	some	method	execute	a	function	that	returns
a	boolean	on	each	element	of	 the	array	and	 returns	 true	 if
the	 passed	 function	 returns	 true	 for	 (every/some)	 of	 the
elements	in	the	array.



The	every	method:

Returns	true	if	the	function	returns	true	on	all	of	the
elements

Returns	false	if	the	function	is	false	on	any	single
element

The	some	method:

Returns	true	if	the	function	returns	true	on	any	single
element

Returns	false	if	the	function	returns	false	on	all	of	the
elements

const	ages=	[21,	12,	19,	6,	15];
if	(ages.some((age)	=>	age	>	18)){
				console.log('We	have	some	adults');
}else{
				console.log('We	have	no	adults');
}
if	(ages.every((age)	=>	age	>	18)){
				console.log('We	have	all	adults');
}
else{
				console.log('We	have	at	least	1	kid');
}



These	do	not	mutate	the	array	in	any	way.

The	find	and	findIndex	methods
The	 find	 method	 execute	 a	 function	 (Test	 method)	 that
returns	a	boolean	on	each	element	of	the	array	and	returns
the	 first	 element	 where	 the	 function	 returns	 true.	 The
findIndex	method	returns	the	cardinal	index	of	the	element
in	the	array	instead.

find:

Returns	the	first	element	where	the	test	function	returns
true

Returns	undefined	if	the	test	function	returns	false	on	all
elements

interface	Person	{
				name:	string;
				age:	string;
}
const	people:	Person[]	=	[{	name:	"John",	age:	"21"	},{	
name:	"Jane",	age:	"22"	}];
let	jane	=	people.find((person)	=>	person.name	===	"Jane");
if	(jane	!==	undefined)	console.log(`found	${jane.name}`);



findIndex:

Returns	the	index	of	the	first	element	where	the	test
function	returns	true

Returns	-1	if	the	test	function	returns	false	on	all
elements

interface	Person	{
				name:	string;
				age:	string;
}
const	people:	Person[]	=	[{	name:	"John",	age:	"21"	},{	
name:	"Jane",	age:	"22"	}];
const	index	=	people.findIndex((person)	=>	person.name	===	
"John");
if	(index	!==	-1)	console.log(`found	${people[index].name}	
`);

There	are	also	last	versions	of	these	methods	that	return	the
last	 element	 that	 matches.	 These	 are	 findLast	 and
findLastIndex.

These	do	not	mutate	the	array	in	any	way.

The	filter	method



The	 filter	 method	 executes	 a	 function	 (Test	 method)	 that
returns	a	boolean	on	each	element	of	the	array.	It	returns	a
new	 array	 of	 the	 elements	where	 the	 test	 function	 returns
true.

interface	Person	{
				name:	string;
				age:	number;
}

const	people:	Person[]	=	[
				{	name:	"John",	age:	17	},
				{	name:	"Jane",	age:	22	},
];
const	adults	=	people.filter((person)	=>	person.age	>	18);
console.log(adults);

Filter	returns	an	array	with	all	of	the	elements	(Jane	in	our
example)	 where	 the	 function	 returns	 true.If	 the	 function
returns	false	on	all	elements,	it	returns	an	empty	array	[].

Since	it	does	not	mutate	the	original	array,	you	must	capture
the	return	value.

This	does	not	mutate	the	array	in	any	way.

The	map	method



The	 map	 method	 executes	 a	 function	 that	 returns	 a	 new
array	consisting	of	the	return	values	of	the	function	applied
to	each	element	of	the	array.

const	ages:number[]=people.map((person)	=>	person.age);
console.log(ages);		//outputs	an	array	of	ages.

In	the	example,	the	method	is	called	on	each	person	object,
and	 returns	 the	 age	 of	 that	 person.	 The	 result	 is	 an	 array
containing	the	ages	of	each	person	in	the	same	order	as	the
people	in	the	original	array.

It	 is	 not	 critical	 that	 the	 method	 USE	 the	 element	 of	 the
array,	suppose	I	wanted	to	create	an	array	containing	0’s	for
each	element	in	our	array.

const	zeros:number[]=people.map((person)	=>	0);
console.log(zeros)

Map	 is	 very	 useful	 for	 extracting	 data	 from	 an	 array	 of
objects.

This	does	not	mutate	the	array	in	any	way.

The	flatMap	method



The	flatMap	method	executes	a	function	and	returns	a	new
array	consisting	of	the	return	values	of	the	function	applied
to	each	element	in	a	nested	array.

interface	Person	{
				name:	string;
				groups:	string[];
}
const	people:	Person[]	=	[
				{	name:	"John",	groups:	["admin",	"user"]	},
				{	name:	"Jane",	groups:	["editor"]	},
];
let	groups:	string[]	=	
				people.flatMap((person)	=>	person.groups);
console.log(groups);

In	the	example,	the	method	is	called	on	each	person	object,
but	 the	 function	 returns	 an	 array	 which	 is	 then	 combined
with	the	other	arrays	returned	into	a	single	array	(merge).
Here	 map	 would	 return	 [[‘admin’,’user’],[‘editor’] ,	 but
flatMap	flattens	it	into	 [‘admin’,’user’,’editor’]

This	does	not	mutate	the	array	in	any	way.

The	reduce	method



The	reduce	method	takes	a	function	of	two	parameters.	The
first	 is	the	array	element	and	the	second	is	an	accumulator
variable	which	gets	passed	 to	each	 function	along	with	 the
array	element.
The	 accumulator	 value	 is	 passed	 from	 one	 function	 call	 to
the	next	allowing	us	to	Reduce	the	array	into	a	single	value.
The	 reduce	 method	 returns	 a	 single	 value	 that	 is	 the
accumulated	 result	 of	 all	 of	 the	 functions	 calls	 on	 each
element	of	the	array.

The	reduce	function	ignores	empty	array	elements.

let	vals:	number[]	=	[1,	2,	3,	4,	5];
let	sum	=	vals.reduce((acc,	val)	=>	acc	+	val,	0);

In	the	example	we	are	summing	up	the	numbers	in	an	array
by	adding	each	number	to	acc.	The	initial	value	of	acc	is	the
second	parameter	to	reduce.

Here	 is	 a	 product	 example	 (note	 that	 for	 this	 we	 set	 the
initial	value	of	accumulator	to	1):

let	vals:	number[]	=	[1,	2,	3,	4,	5];
let	product=	vals.reduce((acc,	val)	=>	acc	*	val,	1);

For	something	a	little	bit	more	interesting,	we	can	compute
some	basic	statistics	on	an	array.
Note	 that	 we	 can	 do	 anything	 inside	 the	 function	 and	 any



changes	we	make	to	the	accumulator	parameter	get	passed
on	to	the	function	call	for	the	next	element	in	the	array.

let	vals=[1,2,3,4,5];
let	max=	vals.reduce((acc,	val)	=>	Math.max(acc,	val),	-
Infinity);
let	min=	vals.reduce((acc,	val)	=>	Math.min(acc,	val),	
Infinity);
let	average	=	vals.reduce((acc,	val)	=>	acc	+	val,	0)	/	
vals.length;
let	stdev	=	Math.sqrt(
				vals.reduce((acc,	val)	=>	{
								return	acc	+	(val	-	average)	**	2;
				},	0)	/	vals.length);

Notice	that	without	the	braces	{}	the	value	is	returned
automatically	 by	 the	 anonymous	 function	 (as	 in	 min,
max,	 and	 average	 above),	 but	with	 the	 braces	 I	must
explicitly	call	return	(as	in	stdev	above).	This	is	true	of
all	anonymous	functions.

We	can	exclude	 some	values	 from	our	count,	 and	also	map
some	values	first.	Here	we	are	summing	up	the	odd	integers
in	our	array	vals.



let	vals=[1,2,3,4,5];
sumOdd=vals.reduce((acc,val)=>{
				if	(val%2)return	acc+val
				else	return	acc;
},0);

Even	though	we	are	supposed	to	return	a	single	value,	that
value	 can	 be	 a	 complex	 object.	 Here	 we	 compute	 all	 the
statistics	in	a	single	pass	through	the	array.



interface	Stats	{
				max:	number;
				min:	number;
				average:	number;
				stdev:	number;
}
let	stats:	Stats	=	vals.reduce(
				(acc,	val)	=>	{
								return	{
												max:	Math.max(acc.max,	val),
												min:	Math.min(acc.min,	val),
												average:	acc.average	+	val,
												stdev:	acc.stdev	+	(val	-	acc.average)	**	2,
								};
				},
				{
								max:	-Infinity,
								min:	Infinity,
								average:	0,
								stdev:	0,
				},
);

We	 can	 even	 use	 it	 to	 combine	 map	 and	 filter	 in	 a	 single
step.



let	vals=[1,2,3,4,5];
let	OddSqrs	=	vals.reduce((acc:	number[],	val:	number)	=>	{
				if	(val%2)	return	[...acc,	val	*	val];
				else	return	[…acc];
},	[]);

This	 example	 creates	 an	 array	 of	 the	 squares	 of	 the	 odd
numbers	in	the	array.

Consider	the	following	array:

1	|	4	|	11	|	7

We	will	use	this	function	to	sum	the	array.

let	sum	=	vals.reduce((acc,	val)	=>	acc	+	val,	0);

The	 first	 parameter	 is	 our	 function	 which	 takes	 the
accumulator	variable	and	a	variable	to	receive	each	element
of	our	array.	The	second	parameter	is	the	initial	value	of	the
accumulator.

Let’s	 step	 through	 the	 operation	 of	 this	 to	 make	 sure	 we
understand	what	is	happening.

On	the	 first	call	 (element	with	value	1)	 to	our	 function,	 the
values	of	the	parameters	and	return	value	are:



Acc	|	0	|
Val	|	1	|
Returns	|	1	|

On	the	second	call,	the	return	value	of	the	first	call	becomes
the	value	of	accumulator.

Acc	|	1	|
Val	|	4	|
Returns	|	5	|

On	 the	 third	 call,	 the	 return	 value	 of	 the	 second	 call
becomes	the	value	of	accumulator.

Acc	|	5	|
Val	|	11	|
Returns	|	16	|

On	the	fourth	call,	the	return	value	of	the	third	call	becomes
the	value	of	the	accumulator.

Acc	|	16	|
Val	|	7	|
Returns	|	23	|

Since	we	have	made	calls	on	each	element	of	 the	array	we
are	done,	and	reduce	returns	the	value	returned	by	the	last
function	call	(23	in	our	example).



There	 is	a	variant	of	 the	reduce	method	that	 traverses	 the
array	 in	 reverse	 order	 (i.e.	 right	 to	 left	 instead	 of	 left	 to
right).	This	method	is	reduceRight.

let	sum	=	vals.reduceRight((acc,	val)	=>	acc	+	val,	0);

Obviously,	for	the	examples	so	far,	this	makes	no	difference
(sum	 and	 product	 are	 communative),	 but	 there	 are	 cases
wehre	it	would.

Consider	the	following:

let	vals=[1,2,3,4,5];
firstEven=vals.reduce((acc:number,val)=>{
				if	(val%2===0	&&	acc===0)return	val
				else	return	acc
},0);

This	 returns	 the	 first	 even	 number.	 If	 we	 use	 reduceRight
instead	 of	 reduce,	 it	would	 return	 the	 last	 even	 number	 in
the	list.

let	vals=[1,2,3,4,5];
lastEven=vals.reduceRight((acc:number,val)=>{
				if	(val%2===0	&&	acc===0)return	val
				else	return	acc
},0);



This	does	not	mutate	the	array	in	any	way.

The	sort	method
With	no	arguments,	sort	returns	the	elments	in	the	array	in
ascending	or	alphabetical	order.

let	vals=[1,2,3,4,5];
vals.sort();
console.log(vals);

If	we	provide	a	comparison	function,	we	can	define	the	sort
order.	The	function	should	return:

positive	if	the	first	value	comes	second	in	the	sort	order.

negative	if	the	first	value	comes	after	the	second	value.

0	if	the	values	are	the	same.

let	vals=[1,3,2,6,5,4];
ascending=vals.sort((a,b)=>a-b);
descending=vals.sort((a,b)=>b-a);

Since	 we	 pass	 a	 function,	 we	 can	 sort	 arrays	 of	 complex
objects	or	classes	in	any	way	we	wish.



NOTE:	 This	method	 is	 destructive	 and	 overwrites	 the
array.	 If	 you	 don’t	 want	 this	 to	 happen,	 you	 have	 to
clone	the	array	first.

Summary
High	 order	 methods	 are	 methods	 where	 we	 pass	 a
function	 as	 an	 argument,	 or	 return	 a	 function.	 Specifically,
we	examined	a	number	of	high	order	methods	for	working
with	 arrays	 of	 objects.	 These	 methods	 provide	 convenient,
concise,	 and	 clear	 ways	 to	 handle	 various	 tasks	 which	 we
might	wish	to	accomplish	on	arrays.



13)	Recursion



13.1)	Description	and
Definition	of	Recursion
*Recursion	 is	 a	 method	 in	 Computer	 Science	 where	 we
state	 a	 problem	 in	 terms	 of	 a	 smaller	 instance	 of	 that
problem,	then	write	a	function	which	calls	itself	to	solve	the
smaller	version	of	the	problem.

Stating	a	problem	recursively
In	 general,	 Recursion	 involves	 stating	 a	 large	 problem	 in
terms	of	a	smaller	version	of	the	same	problem.

Consider	the	problem	of	teaching	all	of	you	a	concept.
We	can	restate	this	problem	as

Teach	one	student

Teach	the	rest	of	the	students	(this	is	a	smaller	group
with	1	less	student)

Eventually	 there	are	no	more	students	to	 teach	and	we	are
done.
That	is	the	basic	idea	behind	recursion



Consider	a	problem	where	we	have	a	container	of	balls	that
are	 all	 colored	 either	 red	 or	 yellow.	 If	 we	want	 to	 know	 if
there	are	any	yellow	balls	in	the	container,	we	can	state	this
problem	recursively.

Checking	one	ball	is	easy,	so	if	we	remove	a	ball	we	know
if	it	is	yellow	or	not.

If	the	ball	is	yellow,	we	are	done,	so	return	true.

If	the	ball	is	red,	we	can	remove	the	ball	from	the	set

Now	we	have	the	same	problem,	only	there	are
fewer	balls	to	look	at.



Eventually,	we	will	 find	a	 yellow	ball,	 or	we	will	 empty	 the
container	making	 the	problem	 trivial.	Are	 there	 any	 yellow
balls	in	the	empty	container?

Recursion	Terminology
When	we	find	a	yellow	ball	we	are	done.	The	answer	is	“yes”
there	 is	a	yellow	ball.	When	 the	container	 is	 empty	we	are
done.	The	answer	is	“no”	because	there	are	clearly	no	yellow



balls	in	the	empty	container,	and	while	making	it	empty,	we
didn’t	 see	any.	These	 cases	where	 the	answer	 is	 trivial	 are
know	as	stop	conditions	or	the	base	case	of	the	recursion.

So	 how	 do	 we	 get	 there?	 We	 need	 to	 make	 sure	 that
whatever	 we	 do	 when	 the	 stop	 conditions	 are	 not	 met
approaches	 the	 stop	 condition.	 If	 we	 keep	 removing	 balls
one	at	a	time,	either	we	find	the	yellow	ball	or	we	reduce	the
number	of	balls	by	one.	Clearly	in	all	cases,	this	approaches
the	stop	conditions	of	 finding	a	yellow	ball	or	emptying	the
container.	 The	 step	 that	 handles	 non-stop	 conditions	 and
approaches	 the	 stop	 conditions	 is	 referred	 to	 as	 the
recursive	step.



public	balls:string[]	=	[“red”,	“red”,	“red”,	“red”	
,”yellow”,	“red”,	“red”];
function	findYellowBall(container:string[]):boolean{
				
				if	(container.length==0){		//Yellow	ball	not	found	if	
balls	array	is	empty
								return	false;
				}
				else	if	(container[0]===(“yellow”)){		//Yellow	ball	
found
								return	true;
				}
				 		
else		{		//Yellow	ball	might	still	be	in	the	container,	but	
not	in	the	first	element
								return	findYellowBall(container.slice(1));
				}
}

The	 highlighted	 section	 above	 is	 the	 stop	 condition.	 We
first	 check	 if	 the	 array	 is	 empty,	 then	we	 check	 if	 the	 first
ball	in	the	array	is	yellow.	If	either	 is	true	we	are	done	and
we	know	the	answer	(false/true	respectively).



public	balls:string[]	=	[“red”,	“red”,	“red”,	“red”	
,”yellow”,	“red”,	“red”];
function	findYellowBall(container:string[]):boolean{
				if	(container.length==0){		//Yellow	ball	not	found	if	
balls	array	is	empty
								return	false;
				}
				else	if	(container[0]===(“yellow”)){		//Yellow	ball	
found
								return	true;
				}
				else		{		//Yellow	ball	might	still	be	in	the	container,	
but	not	in	the	first	element
								return	findYellowBall(container.slice(1));
				}
}

The	highlighted	section	above	 is	 the	recursive	step.	Since
we	know	it	is	not	the	first	element,	we	simply	reinitiate	our
search	on	the	rest	of	the	array	(elements	2…n)	by	slicing	the
array	and	passing	the	result	to	our	function.

Recursion	Rules
A	recursive	algorithm	must	have	a	base	case	or	stop
condition

A	recursive	algorithm	must	change	state	and	move
towards	the	base	case

A	recursive	algorithm	must	call	itself	recursively



A	simple	Example
Consider	the	porblem	of	computing	factorial.

Factorial	is	defined	as:	n!	=	n	*	(n-1)	*	(n-2)	*	(n-3)	*	…	*	1

5!	=	5	*	4	*	3	*	2	*	1

We	 can	 restate	 this	 in	 terms	 of	 an	 easier	 instance	 of
factorial:	n!	=	n	*	(n	-	1)!

5!	=	5	*	4!

Since	 we	 know	 that	 1!	 is	 equal	 to	 1,	 we	 can	 rewrite	 the
definition	as:

This	is	a	recursive	definition.	It	has	a	stop	condition	(n
===	1),	and	a	recursive	step	(n*(n-1)!)

So	how	do	we	code	this:



Let’s	try	it:

factorial(n:number):number{
				if	(n===1){
								return	1;
				}	else	{
								return	n	*	factorial(n-1);
				}
}
console.log(factorial(5));

So	what	is	actually	happening:

factorial(5)	returns	5	*	factorial(4)

factorial(4)	returns	4	*	factorial(3)

Factorial(3)	returns	3	*	factorial(2)

factorial(2)	returns	2	*	factorial(1)

factorial(1)	returns	1



This	 process	 leads	 to	 the	 answer	 being	 computed	 during
each	return	from	the	base	case	to	the	original	function	call.

But	why?
In	the	 jar	of	marbles	and	factorial	examples,	we	could	very
easily	solve	these	problems	without	recursion.	A	simple	loop
would	be	sufficient.	While	 this	 is	 true	of	most/all	problems,
there	are	problems	that	are	considerably	easier	to	deal	with
by	using	recursion.

Let’s	look	at	a	simple	example	of	binary	search.

In	binary	search,	we	start	with	a	sorted	list.	Instead	of
checking	every	element,	we	check	the	middle	element.

Since	the	list	is	sorted,	if	the	value	is	less	than	the	middle
element,	then	we	don’t	have	to	search	the	second	half	of
the	list.	If	it	is	greater,	than	we	don’t	have	to	search	the



first	half.

Consider:

Find	4	in	[1,2,3,4,5,6,7,8,9]

The	middle	element	is	5,	and	since	4	is	less,	we	can	restrict
further	searches	to	[1,2,3,4]
In	other	words,	 if	 the	middle	element	 is	not	what	we	want,
then	we	have	reduced	the	problem	to	searching	half	the	list.
If	it	is	what	we	want,	then	we	are	done.

Eventually	the	list	will	have	0	or	1	elements	in	it.

If	1,	it	is	either	what	we	are	looking	for	or	not.

If	0,	then	we	did	not	find	what	we	were	looking	for.

So	 to	complete	 the	example	on	 the	array	 [1,2,3,4,5,6,7,8,9]
trying	to	find	4.

4	<	5	so	we	only	search	for	4	in	[1,2,3,4]

The	middle	element	is	either	2	or	3,	os	if	we	pick	3	4>3
so	we	search	for	4	in	[4]

The	list	contians	1	element,	and	that	element	is	the	4	we
are	looking	for.

Another	example,	search	for	11	in	the	same	array.

11	>	5	so	search	for	11	in	[6,7,8,9]



11	>	8	so	search	for	11	in	[9]

11	!=	9	so	we	did	not	find	it.

This	is	a	lot	faster	than	searching	every	element	one	at
a	time.

In	the	case	of	binary	search	our	stop	condition	is:

We	stop	when	there	are	no	elements	in	the	list	and	return
false

We	stop	when	the	middle	element	is	the	one	we	are
looking	for	and	return	true

Our	recursive	step

If	the	search	value	is	greater	than	the	middle	value,	we
search	the	second	half	of	the	list

If	the	search	value	is	less	than	the	middle	value,	we
search	the	first	half	of	the	list

Each	 time,	 we	 are	 searching	 a	 smaller	 list,	 so
eventually	we	will	find	what	we	want	or	the	list	will	be
empty.



Our	stop	condition	in	code:

if	(list.length	===	0){	return	-1;	}
let	mid=Math.floor((list.length	-	1)	/	2);
if	(list[mid]	===	target){	return	list[mid];	}

Our	 recursive	 step	 simply	 calls	 itself	 on	 the	 correct	half	 of
the	array:

else	if	(list[mid]	<	target){
				return	binSearch(list.slice(mid	+	1),	target);
}
else{
				return	binSearch(list.slice(0,	mid),	target);
}

And	the	full	search	function:



function	binSearch(list:	number[],	target:	number){
				if	(list.length	===	0){
								return	-1;
				}
				let	mid	=	Math.floor((list.length-1)	/	2);
				if	(list[mid]	===	target){
								return	list[mid];
				}
				else	if	(list[mid]	<	target){
								return	binSearch(list.slice(mid	+	1),	target);
				}
				else{
								return	binSearch(list.slice(0,	mid),	target);
				}
}
let	list=[1,2,3,4,5,6,7,8,9];
console.log(binSearch(list,	9));
console.log(binSearch(list,	11));

Summary
Recursion	is	a	programming	technique	where	a	problem	is
restated	in	terms	of	a	smaller	instance	of	the	same	problem.
Recursive	 functions	must	have	a	stop	condition	 when	 the
problem	 is	 solved	 or	 when	 the	 smaller	 instance	 becomes
trivial.	 They	 must	 also	 have	 a	 recursive	 step	 where	 they
call	the	same	function	on	a	smaller	instance	of	the	problem.



13.2)	Trees
A	 tree	 in	 Computer	 Science	 is	 a	 data	 structure	 that
represents	data	in	a	parent/child	relationship.

Motivating	Recursion
All	of	these	would	have	been	very	easy	to	implement	using	a
loop	 instead.	 One	 place	 where	 recursion	 is	 particularly
useful	is	Trees.
Trees	 are	 a	 basic	 data	 structure	 that	 we	 can	 use	 to
represent	data	in	a	parent	child	relationship.

Many	problems	can	be	modeled	as	a	tree.	As	a	matter	of	fact
HTML	 is	 actually	 a	 tree	 representation	 since	 a	 parent
element	can	have	multiple	child	elements.

Binary	Search	Trees
Consider	 a	 tree	 of	 numbers	 instead.	 If	 we	 look	 at	 the
children	of	any	node	in	the	tree,	they	are	themselves	a	tree.
Just	a	smaller	one.

Even	for	the	nodes	without	children	we	can	think	of	them	as
trees	with	no	children	(empty	trees).
So	in	other	words,	we	can	treat	each	sub-tree	of	a	tree	with



a	given	root	as	if	it	were	a	tree.
This	feels	like	a	good	candidate	for	recursion.

As	it	turns	out,	this	is	a	special	kind	of	tree	called	a	binary
search	tree.

It	has	some	specific	properties:



A	node	will	have	2	subtrees	(possibly	empty)

Every	number	in	the	left	sub-tree	must	be	less	than	the
value	stored	in	the	node

Every	number	in	the	right	sub-tree	must	be	greater	than
the	value	stored	in	the	node

These	must	hold	for	the	subtree	rooted	at	every	node	in
the	tree.

We	 can	 search	 this	 structure	 by	 examining	 the	 root	 node
then	recursively	searching	the	correct	subtree	based	on	the
values.

Say	we	have	a	treeSearch	method

function	treeSearch(tree:	TreeNode,	target:	number){

and	we	want	to	 find	the	number	100	 in	the	tree.	We	woudl
start	 by	 comapring	 it	 to	 44.	 Since	 100	 >	 44	 we	 know	 the
answer	 must	 be	 in	 the	 right	 subtree	 if	 this	 is	 a	 binary
search	tree.



Root	is	in	orange,	subtree	to	search	is	in	yellow.

We	 now	 call	 our	 treeSearch	 function	 on	 just	 the	 right
subtree.	Now	we	compare	85	to	100.
Again,	85	<	100	so	we	again	search	the	right	subtree.



Root	is	in	orange,	subtree	to	search	is	in	yellow.

This	 time,	we	see	that	 the	value	100	<	126,	so	we	will	call
treeSearch	on	the	left	sub-tree.



Root	is	in	orange,	subtree	to	search	is	in	yellow.

This	 time	when	we	 call	 on	 the	 left	 subtree,	 our	 root	 is	 the
value	we	are	looking	for,	so	we	can	return	that	we	found	it.



Root	is	in	orange,	subtrees	are	empty.

Note:	 if	we	had	been	 looking	for	99,	we	would	search
the	 left	subtree,	which	would	be	empty	and	we	would
return	tat	we	did	not	find	it.

Implementing	Binary	Search	Trees
in	Typescript
First	we	need	a	way	to	represent	a	tree	in	typescript.	Since
every	 node	 in	 a	 tree	 is	 itself	 a	 tree	 root,	 we	 should
implement	the	node	of	a	tree,	then	just	keep	a	reference	to
that	node	as	the	root	of	the	tree.

We	will	create	a	node	class	that	will	contain	a	number	and	2
children.	Those	children	 themselves	will	be	nodes	 (possibly
empty).

export	class	TreeNode{
				left:	TreeNode|undefined=undefined;
				right:	TreeNode|undefined=undefined;
				constructor(public	value:	number){}
}



Searching	Binary	Search	Trees
Now	 we	 can	 right	 our	 treeSearch	 function	 to	 recursively
search	our	tree.

Our	function	should	have	stop	conditions	when	the	tree	is
empty	or	when	the	value	in	the	root	of	the	tree	is	the	one	we
are	looking	for.

if	(tree	===	undefined)	{											//tree	is	emtpy
				return	false;		
}	else	if	(tree.value	===	value)	{						//root	of	tree	is	
our	value
				return	true;
}

For	the	recursive	step,	we	want	to	search	either	the	left	or
right	subtree	based	on	whether	value	is	less	than	or	greater
than	the	node’s	value	(we	already	checked	===	in	our	stop
conditions)
When	we	look	at	a	node,	there	are	only	4	possibilities.

The	node	is	empty	(undefined)

It	is	the	node	we	are	looking	for

It	is	>	than	the	node	we	are	looking	for

It	is	<	than	the	node	we	are	looking	for.



If	 the	 node	 is	 empty	 (undefined)	 then	 the	 node	 with	 the
value	we	are	looking	for	can’t	exist,	so	we	return	false	(did
not	find	it).

If	the	node’s	value	is	===	the	value	we	are	looking	for,	then
we	return	true	(found	it).

If	the	node’s	value	is	<	the	value	we	are	looking	for,	then	if
the	value	 is	 in	 the	 tree,	 it	must	be	 in	 the	right	sub-tree,	so
we	call	treeSearch	recursively	to	search	that	sub-tree.

If	the	node’s	value	is	>	the	value	we	are	looking	for,	then	if
the	value	is	in	the	tree,	it	must	be	in	the	left	sub-tree,	so	we
call	treeSearch	recursively	to	search	that	sub-tree

function	treeSearch(tree:	TreeNode	|	undefined,	value:	
number):	boolean	{
				if	(tree	===	undefined)	{
								return	false;
				}	else	if	(tree.value	===	value)	{
								return	true;
				}	else	if	(tree.value<value){
								return	treeSearch(tree.right,	value);
				}	else	{			//must	be	>	value,	it	is	the	only	posibility	
left
								return	treeSearch(tree.left,	value);
				}			
}

Inserting	into	Binary	Search	Trees



We	can	also	 recursively	 insert	a	node	 into	 the	 tree.	Search
the	tree	until	you	find	a	node	where	the	subtree	you	would
search	next	 is	undefined	and	add	a	new	node	there.	This	 is
our	stop	condition.	If	the	sub-tree	we	would	insert	into	is	not
empty,	then	we	just	insert	into	that	(smaller)	sub-tree.

function	insert(tree:	TreeNode,	value:	number):	void	{
				if	(value===tree.value)	return;
				else	if	(value	<	tree.value)	{
								if	(tree.left	===	undefined)	{
												tree.left	=	new	TreeNode(value);
								}	else	{
												insert(tree.left,	value);
								}
				}	else	{
								if	(tree.right	===	undefined)	{
												tree.right	=	new	TreeNode(value);
								}else{
												insert(tree.right,	value);
								
								}
				}
}

Trees	 are	 a	 common	 data	 structure	 in	 Computer	 Science
and	recursion	is	a	much	more	natural	way	to	deal	with	them.

Complete	Tree	Example



export	class	TreeNode{
				left:	TreeNode|undefined=undefined;
				right:	TreeNode|undefined=undefined;
				constructor(public	value:	number){}
};
function	treeSearch(tree:	TreeNode	|	undefined,	value:	
number):	boolean	{
				if	(tree	===	undefined)	{
								return	false;
				}	else	if	(tree.value	===	value)	{
								return	true;
				}	else	if	(tree.value<value){
								return	treeSearch(tree.right,	value);
				}	else	{			//must	be	>	value,	it	is	the	only	posibility	
left
								return	treeSearch(tree.left,	value);
				}
}
function	insert(tree:	TreeNode,	value:	number):	void	{
				if	(value===tree.value)	return;
				else	if	(value	<	tree.value)	{
								if	(tree.left	===	undefined)	{
												tree.left	=	new	TreeNode(value);
								}	else	{
												insert(tree.left,	value);
								}
				}	else	{
								if	(tree.right	===	undefined)	{
												tree.right	=	new	TreeNode(value);
								}else{
												insert(tree.right,	value);
								}
				}
}



let	treeRoot	=	new	TreeNode(44);
insert(treeRoot,26);
insert	(treeRoot,11);
insert(treeRoot,85)
insert(treeRoot,82)
insert(treeRoot,126)
insert(treeRoot,100)
insert(treeRoot,	200);
insert(treeRoot,	65);
console.log(treeSearch(treeRoot,100));
console.log(treeRoot);

THis	 example	 implements	 the	 binary	 search	 tree	 in	 the
previous	example,	then	searches	it	for	100.

If	 I	 inserted	 them	 in	 a	 different	 order,	 I	 would	 have
gotten	a	different	tree.

Thought	 question:	What	 happens	 if	 I	 insert	 them	 in	 sorted
order?

Answer

An	Object	Oriented	Tree
This	is	nice,	but	it	is	NOT	very	object	oriented.



A	 tree	 node	 should	 encapsulate	 the	 things	we	 can	 do	 to	 a
tree	so	we	won’t	need	external	methods.
For	 our	 implementation	 of	 insert,	 it	 is	 pretty	 straight
forward.
We	 just	 remove	 the	 tree	 parameter,	 and	 instead	 call	 the
member	method	on	the	appropriate	subtree	which	is	not	null
since	we	already	checked	that.

class	TreeNode{
				...

				insert(value:	number):	void	{
								if	(value	===	this.value)	return;
								else	if	(value	<	this.value)	{
												if	(this.left	===	undefined)	{
																this.left	=	new	TreeNode(value);
												}	else	{
																this.left.insert(value);
												}
								}	else	{
												if	(this.right	===	undefined)	{
																this.right	=	new	TreeNode(value);
												}	else	{
																this.right.insert(value);
												}
								}
				}

				...
				
}



For	the	search	method,	it	is	a	little	less	straight	forward.	We
need	 to	 check	 for	 a	 null	 subtree	 before	 we	 make	 the
recursive	 call	 instead	 of	 stopping	 when	 the	 tree	 is	 null
(otherwise	we	will	not	have	an	object	to	call	search	on).

				treeSearch(value:	number):	boolean	{
								if	(this.value	===	value)	{
												return	true;
								}	else	if	(this.value	<	value)	{
												if	(this.right	===	undefined)	{
																return	false;
												}	else	{
																return	this.right.treeSearch(value);
												}
								}	else	{
												if	(this.left	===	undefined)	{
																return	false;
												}	else	{
																return	this.left.treeSearch(value);
												}
								}
				}

Now	 we	 stop	 in	 the	 parent	 node	 if	 the	 child	 node	 is
undefined	 instead	 of	 stopping	 in	 the	 child	 when	 it	 is	 itself
undefined.

Here	is	a	complete	example	of	our	tree	proram:

export	class	TreeNode	{
				left:	TreeNode	|	undefined	=	undefined;



				right:	TreeNode	|	undefined	=	undefined;
				constructor(public	value:	number)	{}
				insert(value:	number):	void	{
								if	(value	===	this.value)	return;
								else	if	(value	<	this.value)	{
												if	(this.left	===	undefined)	{
																this.left	=	new	TreeNode(value);
												}	else	{
																this.left.insert(value);
												}
								}	else	{
												if	(this.right	===	undefined)	{
																this.right	=	new	TreeNode(value);
												}	else	{
																this.right.insert(value);
												}
								}
				}
				treeSearch(value:	number):	boolean	{
								if	(this.value	===	value)	{
												return	true;
								}	else	if	(this.value	<	value)	{
												if	(this.right	===	undefined)	{
																return	false;
												}	else	{
																return	this.right.treeSearch(value);
												}
								}	else	{
												if	(this.left	===	undefined)	{
																return	false;
												}	else	{
																return	this.left.treeSearch(value);
												}
								}
				}



}
let	treeRoot	=	new	TreeNode(44);
treeRoot.insert(26);
treeRoot.insert(11);
treeRoot.insert(85);
treeRoot.insert(82);
treeRoot.insert(126);
treeRoot.insert(100);
treeRoot.insert(200);
treeRoot.insert(65);
console.log(treeRoot.treeSearch(100));
console.log(treeRoot);

Summary
Trees	are	an	important	data	structure	in	Computer	Science.
They	 allow	 us	 to	 store	 data	 in	 a	 structured	 way	 that
represeents	 parent/child	 relationships.	 In	 other	 words,	 a
parent	 can	 have	many	 children,	 but	 a	 child	 can	 only	 have
one	parent.	A	binary	tree	is	a	tree	where	each	node	has	at
most	 two	 children.	 A	 special	 case	 of	 a	 binary	 tree	 is	 a
binary	 search	 tree.	 In	 a	 binary	 search	 tree	 each	 node	 in
the	left	subtree	of	all	nodes	must	be	of	lower	value	than	the
root,	and	each	node	in	the	right	subtree	of	all	nodes	must	be
greater	than	the	value	of	the	root.


